CS60082/CS60094 Computational Number Theory

Mid-semester examination

		wild-semester examination		
	Ma	ximum marks: 70February 26, 2009 (AN)	Duration: 2 hours	
	[This test is open-notes. Answer all questions. Be brief and precise.]			
1 Let $a, b \in \mathbb{N}$ with $gcd(a, b) = 1$. Assume that $a \neq 1$ and $b \neq 1$.				
	(a)	Prove that there exist integers u, v such that $ua + vb = 1$ with $ u < b$ and $ v < b$	< a. (5)	
	(b)	Prove that any integer $n \ge ab$ can be expressed as $n = sa + tb$ with integers	$s,t \ge 0.$ (5)	
	(c)	Devise a polynomial-time (in $\log n$) algorithm to compute s and t of Part (b).	. (5)	
	(d)	Determine the running time of your algorithm.	(5)	
	(Remark: The <i>Frobenius coin change problem</i> deals with the determination of the largest positive integer that cannot be represented as a linear non-negative integer combination of some given positive integers a_1, a_2, \ldots, a_k with $gcd(a_1, a_2, \ldots, a_k) = 1$. For $k = 2$, this integer is $a_1a_2 - a_1 - a_2$.)			
2 Let $n \in \mathbb{N}$. Suppose that we want to compute $x^r y^s \pmod{n}$, where r and s are positive integers of bit size. By using the repeated square and multiply algorithm, one can compute $x^r \pmod{n}$ and y^s independently, and then multiply these two values. Alternatively, one may rewrite the square and algorithm using only one loop in which the bits of both the exponents r and s are simultaneously conditioned and the square operation, one multiplies by 1, x , y , or xy .		$(\mod n)$ and $y^s \pmod{n}$ e the square and multiply		
	(a)	Elaborate the algorithm outlined above.	(5)	
	(b)	What speedup is this modification expected to produce?	(5)	
	(c)	Generalize the concept to the computation of $x^r y^s z^t \pmod{n}$, and analyze t	he speedup. (5)	
	(Remark: Computation of elements of the form $x^r y^s \pmod{n}$ is quite common in cryptosystems based on the discrete logarithm problem. Making this computation faster is, therefore, useful in cryptography.)			
3	(a)	Prove that the polynomial $x^2 + x + 2$ is irreducible modulo 3.	(5)	
	Represent \mathbb{F}_9 as $\mathbb{F}_3(\theta)$, where $\theta^2 + \theta + 2 = 0$.			
	(b)	Find the roots of $x^2 + x + 2$ in \mathbb{F}_9 .	(5)	
	(c)	Find the roots of $x^2 + x + 2$ in \mathbb{Z}_9 .	(5)	
	(d)	Prove that θ is a primitive element of \mathbb{F}_9 .	(5)	
	(e)	Prove that the polynomial $y^2 - \theta$ is irreducible over \mathbb{F}_9 .	(5)	
	Represent \mathbb{F}_{81} as $\mathbb{F}_9(\psi)$, where $\psi^2 - \theta = 0$.			
	(f)	Determine whether ψ is a primitive element of \mathbb{F}_{81} .	(5)	
	(g)	Find the minimal polynomial of ψ over \mathbb{F}_3 .	(5)	