CS60082/CS60094 Computational Number Theory, Spring 2009

Mid-semester examination: Solutions

[This test is open-notes. Answer all questions. Be brief aadige]

1 Leta,b € N with ged(a,b) = 1. Assume that # 1 andb # 1.
(@ Prove that there exist integetsv such thatua + vb = 1 with |u| < band|v| < a. (5)

Solution Extended gcd calculations yield integersy with ua + vb = 1. For anyq € Z, we
then have(u — gb)a + (v + ga)b = 1. Euclidean division of. by b givesu = ¢b + «’ with
quotientq and remainder.’. Let us denote’ = v + ga for this particular value of. But then
w'a+v'b = 1. We already have.'| < b (since it is the remainder of Euclidean division®yso
the equation’ = (1—v/a)/bimplies thatv'| < 3 (1+[u/|a) < F(1+(b—1)a) = a— % < q,
sincea # 1.

(b) Prove that any integet > ab can be expressed as= sa + tb with integerss, t > 0. 5)

Solution We may proceed by induction om. Forn = ab, we haven = b x a + 0 x b.
Now, take anyn > ab, and assume that = sa + tb for some integerss,t > 0. By
Bézout’s theorem, we havie= wua + vb for some integers, v. Summing up gives + 1 =
(s+u)a+ (t+v)b=(s+u—gba+ (t+ v+ qga)bforanyq € Z. Takeq = (s + u) quot b,
s'=(s+u)remb= (s+u)— qgb,andt’ =t + v + ga. We then haver + 1 = s'a + t'b with
0<s <b Ift' <0, wehaven + 1 < s'a < ab, a contradiction. Thug! > 0 too.

(c) Devise a polynomial-time (itbg n) algorithm to compute andt of Part (b). (5)

Solution There is another way of proving Part (b), namely, start with ua + vb with |u| < b
and|v| < a. Butthenn = (nu)a + (nv)b. Replacenu by nu — ¢b, wheres = nu — gb is
the remainder of Euclidean division e by b. Takingt = nv + qa givesn = sa + tb with
s,t > 0. This leads to the following algorithm.

Use the extended gcd algorithm on a, b to compute wu, v with |u| < b.
Take s = (nu) rem b.
Take t = (n — sa)/b.

(d) Determine the running time of your algorithm. 5)

Solution First, note thats < n andb < n, that is, the sizes of andb are bounded by
the size ofn. The computation ofi, v by the extended gcd algorithm takes a running time of
O(log® n) (Euclidean ged) o0 (log? n) (binary ged). Sincéu| < b < n, the productu and
the subsequent reduction modilean be done i (log? n) time. Finally, the computation of

t involves multiplication, subtraction and division on opeds of size§)(logn) and can again
be performed ir0(log? n) time.

(Remark: The Frobenius coin change problem deals with the determination of the largest positive intege

that cannot be represented as a linear non-negative integabination of some given positive integers
aj,as,...,a; With ged(ag, ag, ..., ax) = 1. Fork = 2, this integer isi;ao — a1 — ag.)

— Page 1 0of 3 —

2 Letn € N. Suppose that we want to comput@,® (mod n), wherer ands are positive integers of the same
bit size. By using the repeated square and multiply algerjthne can compute’ (mod n) andy® (mod n)
independently, and then multiply these two values. Altiviely, one may rewrite the square and multiply
algorithm using only one loop in which the bits of both the @xgnts- ands are simultaneously considered.
After each square operation, one multipliesihy, y, or zy.

(@) Elaborate the algorithm outlined above. 5)

Solution
Letr = (Tl_lTl_Q - 7"17“0)2 and s = (81_181_2 - 8180)2.
Precompute zy (mod n).
Initialize prod = 1.
Fori=1—-1,1—2,...,1,0{
Set prod = prod? (mod n).
If (r; = 1) and (s; = 1), set prod = prod x (xy) (mod n),
else if (r; = 1) and (s; = 0), set prod = prod x x (mod n),
else if (r; = 0) and (s; = 1), set prod = prod x y (mod n).
¥

(b) What speedup is this modification expected to produce? 5)

Solution The modified algorithm reduces the number of square opeastio half of that
performed by two independent calls of the repeated squarenaiftiply algorithm. The number
of products, however, depends on the bit pattern of the expsn and s. For random
exponents, about half of the bits are one, that is, two exptateons make about modular
multiplications. The modified algorithm skips the multgation only when both the bits abe—

an event having a probability af/4 for random exponents. Thus, the number of multiplications
done by the modified algorithm is expected to be clos&@76/. The precomputation involves
only one modular multiplication and so has negligible oeath

(c) Generalize the concept to the computation@f*z! (mod n), and analyze the speedup. 5)

Solution
Letr = (r_17—2...7170)2, S = (S1-181—2 . . . $180)2, and t = (t;_1t;_o ... t1tg)2.
Precompute zy, zz,yz, zyz (mod n).
Initialize prod = 1.
Fori=1—-1,1—2,...,1,0{
Set prod = prod® (mod n).
If (14,8, t;) = (1,1,1)) set prod = prod x (xyz) (mod n),
else if ((r4, si,t;) = (1,1,0)) set prod = prod x (zy) (mod n),
else if ((r4, si, t;) = (1,0,1)) set prod = prod x (zz) (mod n),
else if ((r4, si, t;) = (0,1,1)) set prod = prod x (yz) (mod n),
else if ((rs, si, t;) = (1,0,0)) set prod = prod x = (mod n),
(ti) = (0,1,0)
(ti) = (0,0,1)

)
g

)

else if ((r4, s;,
else if ((r4, s4,

))

) set prod = prod x y (mod n),
) set prod = prod x z (mod n).

g

}

The number of square operations performed by this modifigarhm is one-third of that made
by three independent square and multiply exponentiatiBasrandom exponents, the expected
count of modular multiplication operationsiss! for three exponentiations, adi75/ for our
modified algorithm.

(Remark: Computation of elements of the formiy® (mod n) is quite common in cryptosystems based on
the discrete logarithm problem. Making this computaticstéais, therefore, useful in cryptography.)

— Page 2 0of 3 —

3 (a) Prove that the polynomiat? + z + 2 is irreducible modul. 5)
Solution Sincez? + = + 2 is a quadratic polynomial, it is irreducible if and only ifdbes

not have a root. Bub?> +0+2 =2 # 0 (mod 3), 1> +1+2 =1 # 0 (mod 3) and
22 +24+2=2%0 (mod 3).

RepresenFy asF3(6), wheref? + 60 +2 = 0.
(b) Find the roots of:2 + x + 2 in Fy,. (5)

Solution By constructiony itself is a root ofz? + z + 2. Its other root i9)? = —0(0 + 2) =
—0%2—-20=0+2—-20=—0+2=20+2.

(c) Find the roots of:2 + x + 2 in Zj. (5)

Solution Sincez? + z + 2 is irreducible oveiZs, it has no roots modul8 and so no roots
modulo32 = 9 too.

(d) Prove that is a primitive element oFy. 5)

Solution The order ofF§ is9 — 1 = 8 = 23. We haved* = (0 +2)2 = 60> +0 +1 =
—0—24+0+1=—-1=2#1,thatis,dis a primitive element oFy.

(e) Prove that the polynomia)? — is irreducible oveify. (5)

Solution Suppose not. Then, it has one reofin fact, both the roots) iffg, that is,0 = o?.
But thend* = o® = 1 (sincea € F}), that is,d is not a primitive element dfy, a contradiction.

RepresenFg; asFy(v), wherey? — § = 0.

(f) Determine whethet is a primitive element oFg; . 5)
Solution We havey!® = (¢?)8 = 6% = 1, that is,y is not a primitive element dFg; .
(g) Find the minimal polynomial of) overFs. 5

Solution The conjugates of) over F5 are), ¢° = 6, ¢° = 03y3 = 0% = 2 and
27 = 8> = 264. Therefore, the minimal polynomial af overFs is

)@ — 09) (2 — 2¢) (2 — 26¢)
)@+ P)(x - 09) (2 + 69)
— (1’2 ¢2)($2—92¢2)

(z —
(z —

_ (1‘2 9)(%2—93)
= 2t~ 0+ 0327+ 6!
= 2 (0+20+ 22 +2=0" — 22+ 2 =2 427 1 2.

There are other ways of arriving at this polynomial. Firgttenthatd? + 6 4 2 = 0 and? = .
Combining these two equations give$ + ¢ + 2 = 0, that is,+ is a root of the polynomial
x* + 2% + 2 € F3[z]. The degree of) (overFs) is 4, soxz? + x2 4 2 has to be irreducible
modulo3. Finally, sincey) cannot satisfy two different monic irreducible polynonsiah Fs|x]
of degreet, the minimal polynomial of) overF; has to ber* + 22 + 2.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India

— Page 30of3 —

