
CS60082/CS60094 Computational Number Theory, Spring 2009

Mid-semester examination: Solutions

[This test is open-notes. Answer all questions. Be brief and precise.]

1 Let a, b ∈ N with gcd(a, b) = 1. Assume thata 6= 1 andb 6= 1.

(a) Prove that there exist integersu, v such thatua+ vb = 1 with |u| < b and|v| < a. (5)

Solution Extended gcd calculations yield integersu, v with ua + vb = 1. For anyq ∈ Z, we
then have(u − qb)a + (v + qa)b = 1. Euclidean division ofu by b givesu = qb + u′ with
quotientq and remainderu′. Let us denotev′ = v + qa for this particular value ofq. But then
u′a+v′b = 1. We already have|u′| < b (since it is the remainder of Euclidean division byb), so
the equationv′ = (1−u′a)/b implies that|v′| 6

1

b
(1+|u′|a) 6

1

b
(1+(b−1)a) = a− a−1

b
< a,

sincea 6= 1.

(b) Prove that any integern > ab can be expressed asn = sa+ tb with integerss, t > 0. (5)

Solution We may proceed by induction onn. For n = ab, we haven = b × a + 0 × b.
Now, take anyn > ab, and assume thatn = sa + tb for some integerss, t > 0. By
Bézout’s theorem, we have1 = ua + vb for some integersu, v. Summing up givesn + 1 =
(s+ u)a+ (t+ v)b = (s+ u− qb)a+ (t+ v + qa)b for anyq ∈ Z. Takeq = (s+ u) quot b,
s′ = (s+ u) rem b = (s+ u) − qb, andt′ = t+ v + qa. We then haven+ 1 = s′a+ t′b with
0 6 s′ < b. If t′ < 0, we haven+ 1 < s′a < ab, a contradiction. Thus,t′ > 0 too.

(c) Devise a polynomial-time (inlog n) algorithm to computes andt of Part (b). (5)

Solution There is another way of proving Part (b), namely, start with1 = ua+ vb with |u| < b
and |v| < a. But thenn = (nu)a + (nv)b. Replacenu by nu − qb, wheres = nu − qb is
the remainder of Euclidean division ofnu by b. Takingt = nv + qa givesn = sa + tb with
s, t > 0. This leads to the following algorithm.

Use the extended gcd algorithm on a, b to compute u, v with |u| < b.
Take s = (nu) rem b.
Take t = (n− sa)/b.

(d) Determine the running time of your algorithm. (5)

Solution First, note thata < n and b < n, that is, the sizes ofa and b are bounded by
the size ofn. The computation ofu, v by the extended gcd algorithm takes a running time of
O(log3 n) (Euclidean gcd) orO(log2 n) (binary gcd). Since|u| < b < n, the productnu and
the subsequent reduction modulob can be done inO(log2 n) time. Finally, the computation of
t involves multiplication, subtraction and division on operands of sizesO(log n) and can again
be performed inO(log2 n) time.

(Remark: TheFrobenius coin change problem deals with the determination of the largest positive integer
that cannot be represented as a linear non-negative integercombination of some given positive integers
a1, a2, . . . , ak with gcd(a1, a2, . . . , ak) = 1. Fork = 2, this integer isa1a2 − a1 − a2.)

— Page 1 of 3 —

2 Letn ∈ N. Suppose that we want to computexrys (mod n), wherer ands are positive integers of the same
bit size. By using the repeated square and multiply algorithm, one can computexr (mod n) andys (mod n)
independently, and then multiply these two values. Alternatively, one may rewrite the square and multiply
algorithm using only one loop in which the bits of both the exponentsr ands are simultaneously considered.
After each square operation, one multiplies by1, x, y, or xy.

(a) Elaborate the algorithm outlined above. (5)

Solution
Let r = (rl−1rl−2 . . . r1r0)2 and s = (sl−1sl−2 . . . s1s0)2.
Precompute xy (mod n).
Initialize prod = 1.
For i = l − 1, l − 2, . . . , 1, 0 {

Set prod = prod2 (mod n).
If (ri = 1) and (si = 1), set prod = prod× (xy) (mod n),
else if (ri = 1) and (si = 0), set prod = prod× x (mod n),
else if (ri = 0) and (si = 1), set prod = prod× y (mod n).

}

(b) What speedup is this modification expected to produce? (5)

Solution The modified algorithm reduces the number of square operations to half of that
performed by two independent calls of the repeated square and multiply algorithm. The number
of products, however, depends on the bit pattern of the exponents r and s. For random
exponents, about half of the bits are one, that is, two exponentiations make aboutl modular
multiplications. The modified algorithm skips the multiplication only when both the bits are0—
an event having a probability of1/4 for random exponents. Thus, the number of multiplications
done by the modified algorithm is expected to be close to0.75l. The precomputation involves
only one modular multiplication and so has negligible overhead.

(c) Generalize the concept to the computation ofxryszt (mod n), and analyze the speedup. (5)

Solution
Let r = (rl−1rl−2 . . . r1r0)2, s = (sl−1sl−2 . . . s1s0)2, and t = (tl−1tl−2 . . . t1t0)2.
Precompute xy, xz, yz, xyz (mod n).
Initialize prod = 1.
For i = l − 1, l − 2, . . . , 1, 0 {

Set prod = prod2 (mod n).
If ((ri, si, ti) = (1, 1, 1)) set prod = prod× (xyz) (mod n),
else if ((ri, si, ti) = (1, 1, 0)) set prod = prod× (xy) (mod n),
else if ((ri, si, ti) = (1, 0, 1)) set prod = prod× (xz) (mod n),
else if ((ri, si, ti) = (0, 1, 1)) set prod = prod× (yz) (mod n),
else if ((ri, si, ti) = (1, 0, 0)) set prod = prod× x (mod n),
else if ((ri, si, ti) = (0, 1, 0)) set prod = prod× y (mod n),
else if ((ri, si, ti) = (0, 0, 1)) set prod = prod× z (mod n).

}

The number of square operations performed by this modified algorithm is one-third of that made
by three independent square and multiply exponentiations.For random exponents, the expected
count of modular multiplication operations is1.5l for three exponentiations, and0.875l for our
modified algorithm.

(Remark: Computation of elements of the formxrys (mod n) is quite common in cryptosystems based on
the discrete logarithm problem. Making this computation faster is, therefore, useful in cryptography.)

— Page 2 of 3 —

3 (a) Prove that the polynomialx2 + x+ 2 is irreducible modulo3. (5)

Solution Sincex2 + x + 2 is a quadratic polynomial, it is irreducible if and only if itdoes
not have a root. But02 + 0 + 2 ≡ 2 6≡ 0 (mod 3), 12 + 1 + 2 ≡ 1 6≡ 0 (mod 3) and
22 + 2 + 2 ≡ 2 6≡ 0 (mod 3).

RepresentF9 asF3(θ), whereθ2 + θ + 2 = 0.

(b) Find the roots ofx2 + x+ 2 in F9. (5)

Solution By construction,θ itself is a root ofx2 + x+ 2. Its other root isθ3 = −θ(θ + 2) =
−θ2 − 2θ = θ + 2 − 2θ = −θ + 2 = 2θ + 2.

(c) Find the roots ofx2 + x+ 2 in Z9. (5)

Solution Sincex2 + x + 2 is irreducible overZ3, it has no roots modulo3 and so no roots
modulo32 = 9 too.

(d) Prove thatθ is a primitive element ofF9. (5)

Solution The order ofF∗

9 is 9 − 1 = 8 = 23. We haveθ4 = (θ + 2)2 = θ2 + θ + 1 =
−θ − 2 + θ + 1 = −1 = 2 6= 1, that is,θ is a primitive element ofF9.

(e) Prove that the polynomialy2 − θ is irreducible overF9. (5)

Solution Suppose not. Then, it has one rootα (in fact, both the roots) inF9, that is,θ = α2.
But thenθ4 = α8 = 1 (sinceα ∈ F

∗

9), that is,θ is not a primitive element ofF9, a contradiction.

RepresentF81 asF9(ψ), whereψ2 − θ = 0.

(f) Determine whetherψ is a primitive element ofF81. (5)

Solution We haveψ16 = (ψ2)8 = θ8 = 1, that is,ψ is not a primitive element ofF81.

(g) Find the minimal polynomial ofψ overF3. (5)

Solution The conjugates ofψ over F3 areψ, ψ3 = θψ, ψ9 = θ3ψ3 = θ4ψ = 2ψ and
ψ27 = 8ψ3 = 2θψ. Therefore, the minimal polynomial ofψ overF3 is

(x− ψ)(x− θψ)(x− 2ψ)(x − 2θψ)

= (x− ψ)(x+ ψ)(x− θψ)(x+ θψ)

= (x2 − ψ2)(x2 − θ2ψ2)

= (x2 − θ)(x2 − θ3)

= x4 − (θ + θ3)x2 + θ4

= x4 − (θ + 2θ + 2)x2 + 2 = x4 − 2x2 + 2 = x4 + x2 + 2.

There are other ways of arriving at this polynomial. First, note thatθ2 + θ+ 2 = 0 andψ2 = θ.
Combining these two equations givesψ4 + ψ2 + 2 = 0, that is,ψ is a root of the polynomial
x4 + x2 + 2 ∈ F3[x]. The degree ofψ (over F3) is 4, sox4 + x2 + 2 has to be irreducible
modulo3. Finally, sinceψ cannot satisfy two different monic irreducible polynomials in F3[x]
of degree4, the minimal polynomial ofψ overF3 has to bex4 + x2 + 2.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India

— Page 3 of 3 —

