CS60082/CS60094 Computational Number Theory, Spring 2009

End-semester examination: Solutions

[ This test is open-notes. Answer all questions. Be brief andipe]

1 Suppose we want to compute the smallest prime n, wheren is a given positive integer. Assume that
n > 1. The obvious strategy is to test the primality:afn + 1,7 + 2, ... until a primen + k is found.
During the search, it is natural to exclude the integers twhieobviously not prime. For example, there is
no need to check the primality of even integers, the muki@g3, the multiples of5, and so on. A sieve
can be used to throw away multiples of small primesps, . .., p; and check the primality of only those
integers of the form: + 4 that do not have prime divisoks p;. One takes betweenl0 and1000.

A primepis called aSophie Germain primeif 2p+ 1 is also a prime. Itis conjectured that there are infinitely
many Sophie Germain primes.fis a Sophie Germain prime, the pridg+ 1 is called asafe prime. Safe
primes are frequently used in cryptography.

In this exercise, you are asked to extend the above sievedatihg the smallest Sophie Germain prime
p = n for a given positive integer. > 1. Sieve over the intervdh, n + M].

(@) Determine a value of\/ such that there is (at least) one Sophie Germain prime ofdha fi + 7,
0 < i < M, with high probability. The value a#/ should be as small as possible. 5)

Solution By the prime number theorem, the number of prirges is nearlyx/ In z, that is, the
probability that a randomly chosen integérz is prime is nearlyl / In z. Under the assumption
thatz and2x + 1 both behave as random integers, the probability thatronei is a Sophie
German prime is nearly/[In(n + M) In(2(n + M) + 1)] which is approximatelyl / In? n.
Therefore, we should tak&/ = In?n (or a small multiple oin? n).

(b) Describe a sieve to throw away the valueswof i for which eithern + i or 2(n + i) + 1 has a prime
divisor < p;. Taket as a constant (like00). (20)

Solution We use an arrayl indexed by: in the ranged < i < M. It is not essential to know
the exact factorizations of + i. Detecting only that + i or 2(n + i) 4 1 is divisible by any
p; suffices to throw away. + i.

In view of this, we initialize each array locatiofy; to 1. D
Now, takeg = p; forsomej € {1,2,...,t}. The conditiorny | (n+:) impliesi = —n (mod ¢),

so we setd; = 0 for all values ofi satisfying this congruence. 4
Moreover, forq # 2, the conditiong | 2(n + i) + 1 impliesi = —n — 27! (mod g), that is, we

setA; = 0 for all values ofi satisfying this second congruence. 4
After all primespy, po, . .., p; are considered, we check the primalityroft i and2(n + i) + 1

only for thosei for which we continue to havd,; = 1. D

(c) Describe the gain in the running time, that you achieve uliegsieve. (10)

Solution Let P = pyps - - - pr andQ = paps - - - p¢. The probability that a random + 4 is not
divisible by anyp; is aboutp(P)/P. Likewise, the probability that a randogn +4) + 1 is not
divisible by anyp; is aboutp(Q)/Q. Let us assume that the two events “divisibilityrof- i by

p;” and “divisibility of 2(n + i) 4+ 1 by p,” are independent. Then, we check the primality of
n+iand2(n +¢) + 1 for about(M + 1)%2’2@) values ofi. Therefore, the speedup obtained
is close to#ﬁf@. Fort = 10, this speedup is aboad; for ¢ = 100, it is about64; and for

t = 1000, it is about128. Note that for a suitably chosenwe may neglect the sieving time
which isO(t + M logt), that is,0(t + (log?n)(logt)). In contrast, each primality test (like

Miller-Rabin) takes timeD (log? n).

2 In Floyd’s variant of Pollard’s rho method for factoring tivgegern, we compute the values af, and
x9r and thenged (xy, — w9, n), for k = 1,2, 3,.... Suppose that we instead compute . ; andz,, and
subsequentlygcd(z,x 11 — sk, ), fork =1,2,3,..., wherer, s € N.
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(@) Deduce a condition relating, s and the length of the cycle such that this method is guaranteed to
detect a cycle of length (20)

Solution A cycle of lengthl is detected if and only ifk + 1 = sk (mod [) (butrk + 1 # sk
as integers) for all sufficiently largle. This condition is equivalent to- — s)k = —1 (mod ).
This congruence has a solution if and onlgdfl(r — s,1) = 1.

(Remark: Without the+1 in the first walk, any cycle will be detected as longrag s. This is
because we now requirg: = sk (mod 1), that is,(r — s)k = 0 (mod [). This congruence is
solvable fork for any value ofr ands. The conditionrk # sk (as integers) demanas+# s.)

(b) Characterize all the pairg;, s) such that this method is guaranteed to detect cycles of agyte (5)

Solution The conditionged(r — s,1) = 1 for all positive integers is satisfied if and only if
r—s==l.

3 Dixon’s method for factoring an integer can be combined with a sieve in order to reduce its running tim
to L[3/2]. Instead of choosing random valuesaqf o, . .., z, in the relations, we first choose a random
value ofz and, for—M < ¢ < M, we check the smoothness of the integars- ¢)? (mod n) overt small
primespy, pa, . .., pr. As in Dixon’s original method, take= L[1/2].

(@) Determine the value a¥/ for which one expects to get a system of the desired size. 5)

Solution For a randomly chosen, the integefT’(c) = (x + ¢)? rem n is of valueQ(n) and so
has a probability of. 2;—1 = L[-1] of being L[1/2]-smooth. That isL[1] values ofc need
2
to be tried in order to obtain a single relation. Since we negabout2¢ (which is againL[1/2])
relations, the value ai/ should beL[1] x L[1/2] = L[3/2].
(b) Describe a sieve over the intenjal M, M| for detecting the smooth values @f + ¢)? (mod n). (10)

Solution Follow a strategy similar to the QSM. Let = kn+J with J € {0,1,2,...,n—1}.
We have(z + ¢)? = 22 + 2zc+ 2 = kn + J + 2zc + ¢ = T(c) (mod n), where
T(c) = J + 2xc+ 2 2

Use an arrayd indexed byc in the range-M < ¢ < M. Initialize A, = log |T'(¢)|. 2

For each small primg and small exponerit, solve the congruender + ¢)? = kn (mod ¢").
For all values of: in the range- M < ¢ < M, that satisfy the above congruence, subttagy

from A.. 5
When allg andh values are considered, check which array locatidpstore values close t@
Perform trial divisions on the correspondififc) values. (@D}
(c) Deduce how you achieve a running timeldB /2] using this sieve. (20)

Solution Follow the analysis of sieving in QSM. Initializing takesL[3/2] time. Solving all
the congruenceér + ¢)? = kn (mod ¢") takesL[1/2] time. Subtraction of allog ¢ values
takesL[3/2] time. Trial division of L[1/2] smooth values by.[1/2] primes taked.[1] time.
Finally, the sparse system with[1/2] variables and.[1/2] equations can be solved 1]
time. (2x5)

4 () Leth € I have ordenn (a divisor ofg — 1). Prove that fora € Fy, the discrete logarithnndy, a

exists if and only ifa™ = 1. (20)
Solution Leta = h* for somek € {0,1,2,...,m — 1}. Sinceord(h) = m, we have
ord(a) = m/ ged(m, k), thatis,ord(a) | m, that is,a™ = 1. (5)
The equationz™ — 1 hasm (distinct) rootsh”* for k = 0,1,2,...,m — 1. Sincel, is a field,
the polynomialz™ — 1 cannot have more than roots, that isa™ = 1 implies thata = h* for
somek. 5
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(b) Suppose that and ¢’ are two primitive elements of;. Show that if one can compute discrete
logarithms to the basg in O(f(log¢)) time, then one can also compute discrete logarithms to tee ba
¢ in O(f(logq)) time. (You may assume thég{log ¢) is a super-polynomial expressionlisy q.) (10

Solution Letg’ = ¢" for somer with ged(r,q — 1) = 1. (3)
Takea = (¢')* = ¢"*. Then,indya =z = r~! x (rz) = r'indya (mod ¢ — 1). But
r = ind, ¢, thatis,ind, a = (ind, ¢') ™t x (indy a) (mod g — 1). (5
In other words, two index calculations to the basgive ind, a. The total effort of two

index calculations i) (f(logg¢)). The additional effort associated with one inverse and one
multiplication modulog — 1 requireso( f(log ¢)) time. 2

5 Suppose that in the linear sieve method for computing disdogarithms irif',,, we obtain ann x n system
of congruences, whene = ¢t + 2M + 2 andm = 2n. Assume that th&'(c;, c2) values behave as random
integers (within a bound). Calculate the expected numbeobnfzero entries in the: x n coefficient matrix.
You may make use of the fact that, for a positive real numbdne sum of the reciprocals of the primgse
is approximateln In z + By, whereB; = 0.2614972128 ... is known as théviertens constant. (Note that
the expected number of non-zero entries is significantlyliemigan the obvious upper bourdm log p).) (15)

Solution Number the columns of the coefficient matrdxby 0, 1,2, ...,t +2M + 1. Column
0 corresponds to the “prime=1, Columnsl throught to the small prime®, ps, ..., p:, and
Columnst + 1 throught + (2M + 1) to the H + ¢ values for—M < ¢ < M. Suppose also
that the last row corresponds to tfree relationind,(p;) = 1 for some;. This row has only
one non-zero entry. We now count the number of non-zeroemnini the firstn — 1 rows.

The expected number of non-zero entries in Colunis (m — 1)/2. (2

Forl < j < t, the expected number of non-zero entries in Coluym® (m — 1)/p;, since a
randomly chosen integer is divisible by the primewith probability 1/p;. 5

Finally, consider the submatrix consisting of the fitst- 1 rows and the laf2M + 1 columns.
Each row in this submatrix has exactly two non-zero entrimsesponding to the two values
c1, co for a smoothT’(¢q, c2). Of course, we allow the possibility = ¢o during sieving (in
which case there is only one non-zero entry in a row), but $itisation occurs with a low
probability, and we expect to get at most only a small coristamber of such rows. In view
of this, we neglect the effects of these rows in our final count 5

To sum up, the expected number of non-zero entrie$ isnearly

t

14 (m—1)/24 (m —1) (Zi) +2(m —1).

j=1 pj

By the prime number theorem, tiheh primep; is approximately equal tbln ¢, and so the sum

Sho I% equalsinIn(t1Int) + By, approximately. Combining these observations, we corclud
J

that the expected count of non-zero entrieslirs nearly (©)]

1+ (m = 1)(InIn(tnt) + By +5/2)
= 1+ (2t+4M +3)(Inln(tInt) + By +5/2).

(This estimate indicates that we expect o8lfin In ¢) non-zero entries per row, on an average.
Sincet = L[1/2], this count is©(In In p)—a quantity exponentially tighter than the obvious

upper bound)(log p).)
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