
CS60082/CS60094 Computational Number Theory, Spring 2009

End-semester examination: Solutions

[This test is open-notes. Answer all questions. Be brief and precise.]

1 Suppose we want to compute the smallest primep > n, wheren is a given positive integer. Assume that
n ≫ 1. The obvious strategy is to test the primality ofn, n + 1, n + 2, . . . until a primen + k is found.
During the search, it is natural to exclude the integers which areobviously not prime. For example, there is
no need to check the primality of even integers, the multiples of 3, the multiples of5, and so on. A sieve
can be used to throw away multiples of small primesp1, p2, . . . , pt and check the primality of only those
integers of the formn + i that do not have prime divisors6 pt. One takest between10 and1000.
A primep is called aSophie Germain prime if 2p+1 is also a prime. It is conjectured that there are infinitely
many Sophie Germain primes. Ifp is a Sophie Germain prime, the prime2p + 1 is called asafe prime. Safe
primes are frequently used in cryptography.
In this exercise, you are asked to extend the above sieve for locating the smallest Sophie Germain prime
p > n for a given positive integern ≫ 1. Sieve over the interval[n, n + M ].

(a) Determine a value ofM such that there is (at least) one Sophie Germain prime of the form n + i,
0 6 i 6 M , with high probability. The value ofM should be as small as possible. (5)

Solution By the prime number theorem, the number of primes6 x is nearlyx/ ln x, that is, the
probability that a randomly chosen integer6 x is prime is nearly1/ ln x. Under the assumption
that x and2x + 1 both behave as random integers, the probability that onen + i is a Sophie
German prime is nearly1/[ln(n + M) ln(2(n + M) + 1)] which is approximately1/ ln2 n.
Therefore, we should takeM = ln2 n (or a small multiple ofln2 n).

(b) Describe a sieve to throw away the values ofn + i for which eithern + i or 2(n + i) + 1 has a prime
divisor 6 pt. Taket as a constant (like100). (10)

Solution We use an arrayA indexed byi in the range0 6 i 6 M . It is not essential to know
the exact factorizations ofn + i. Detecting only thatn + i or 2(n + i) + 1 is divisible by any
pj suffices to throw awayn + i.

In view of this, we initialize each array locationAi to 1. (1)

Now, takeq = pj for somej ∈ {1, 2, . . . , t}. The conditionq | (n+i) impliesi ≡ −n (mod q),
so we setAi = 0 for all values ofi satisfying this congruence. (4)

Moreover, forq 6= 2, the conditionq | 2(n + i) + 1 impliesi ≡ −n− 2−1 (mod q), that is, we
setAi = 0 for all values ofi satisfying this second congruence. (4)

After all primesp1, p2, . . . , pt are considered, we check the primality ofn + i and2(n + i) + 1
only for thosei for which we continue to haveAi = 1. (1)

(c) Describe the gain in the running time, that you achieve usingthe sieve. (10)

Solution Let P = p1p2 · · · pt andQ = p2p3 · · · pt. The probability that a randomn + i is not
divisible by anypj is aboutφ(P )/P . Likewise, the probability that a random2(n+ i)+1 is not
divisible by anypj is aboutφ(Q)/Q. Let us assume that the two events “divisibility ofn+ i by
pj” and “divisibility of 2(n + i) + 1 by pj” are independent. Then, we check the primality of

n + i and2(n + i) + 1 for about(M + 1)φ(P )φ(Q)
PQ

values ofi. Therefore, the speedup obtained

is close to PQ
φ(P )φ(Q) . For t = 10, this speedup is about20; for t = 100, it is about64; and for

t = 1000, it is about128. Note that for a suitably chosent, we may neglect the sieving time
which isO(t + M log t), that is,O(t + (log2 n)(log t)). In contrast, each primality test (like
Miller-Rabin) takes timeO(log3 n).

2 In Floyd’s variant of Pollard’s rho method for factoring theintegern, we compute the values ofxk and
x2k and thengcd(xk − x2k, n), for k = 1, 2, 3, . . . . Suppose that we instead computexrk+1 andxsk and
subsequentlygcd(xrk+1 − xsk, n), for k = 1, 2, 3, . . . , wherer, s ∈ N.
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(a) Deduce a condition relatingr, s and the lengthl of the cycle such that this method is guaranteed to
detect a cycle of lengthl. (10)

Solution A cycle of lengthl is detected if and only ifrk + 1 ≡ sk (mod l) (but rk + 1 6= sk
as integers) for all sufficiently largek. This condition is equivalent to(r − s)k ≡ −1 (mod l).
This congruence has a solution if and only ifgcd(r − s, l) = 1.

(Remark: Without the+1 in the first walk, any cycle will be detected as long asr 6= s. This is
because we now requirerk ≡ sk (mod l), that is,(r − s)k ≡ 0 (mod l). This congruence is
solvable fork for any value ofr ands. The conditionrk 6= sk (as integers) demandsr 6= s.)

(b) Characterize all the pairs(r, s) such that this method is guaranteed to detect cycles of any length. (5)

Solution The conditiongcd(r − s, l) = 1 for all positive integersl is satisfied if and only if
r − s = ±1.

3 Dixon’s method for factoring an integern can be combined with a sieve in order to reduce its running time
to L[3/2]. Instead of choosing random values ofx1, x2, . . . , xs in the relations, we first choose a random
value ofx and, for−M 6 c 6 M , we check the smoothness of the integers(x + c)2 (mod n) overt small
primesp1, p2, . . . , pt. As in Dixon’s original method, taket = L[1/2].

(a) Determine the value ofM for which one expects to get a system of the desired size. (5)

Solution For a randomly chosenx, the integerT (c) = (x + c)2 rem n is of valueO(n) and so

has a probability ofL
[

−1
2× 1

2

]

= L[−1] of beingL[1/2]-smooth. That is,L[1] values ofc need

to be tried in order to obtain a single relation. Since we require about2t (which is againL[1/2])
relations, the value ofM should beL[1] × L[1/2] = L[3/2].

(b) Describe a sieve over the interval[−M,M ] for detecting the smooth values of(x + c)2 (mod n). (10)

Solution Follow a strategy similar to the QSM. Letx2 = kn+J with J ∈ {0, 1, 2, . . . , n−1}.
We have(x + c)2 ≡ x2 + 2xc + c2 ≡ kn + J + 2xc + c2 ≡ T (c) (mod n), where
T (c) = J + 2xc + c2. (2)

Use an arrayA indexed byc in the range−M 6 c 6 M . Initialize Ac = log |T (c)|. (2)

For each small primeq and small exponenth, solve the congruence(x + c)2 ≡ kn (mod qh).
For all values ofc in the range−M 6 c 6 M , that satisfy the above congruence, subtractlog q
from Ac. (5)

When allq andh values are considered, check which array locationsAc store values close to0.
Perform trial divisions on the correspondingT (c) values. (1)

(c) Deduce how you achieve a running time ofL[3/2] using this sieve. (10)

Solution Follow the analysis of sieving in QSM. InitializingA takesL[3/2] time. Solving all
the congruences(x + c)2 ≡ kn (mod qh) takesL[1/2] time. Subtraction of alllog q values
takesL[3/2] time. Trial division ofL[1/2] smooth values byL[1/2] primes takesL[1] time.
Finally, the sparse system withL[1/2] variables andL[1/2] equations can be solved inL[1]
time. (2×5)

4 (a) Let h ∈ F
∗

q have orderm (a divisor ofq − 1). Prove that fora ∈ F
∗

q , the discrete logarithmindh a
exists if and only ifam = 1. (10)

Solution Let a = hk for somek ∈ {0, 1, 2, . . . ,m − 1}. Sinceord(h) = m, we have
ord(a) = m/ gcd(m,k), that is,ord(a) | m, that is,am = 1. (5)

The equationxm − 1 hasm (distinct) rootshk for k = 0, 1, 2, . . . ,m − 1. SinceFq is a field,
the polynomialxm − 1 cannot have more thanm roots, that is,am = 1 implies thata = hk for
somek. (5)
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(b) Suppose thatg and g′ are two primitive elements ofF∗

q. Show that if one can compute discrete
logarithms to the baseg in O(f(log q)) time, then one can also compute discrete logarithms to the base
g′ in O(f(log q)) time. (You may assume thatf(log q) is a super-polynomial expression inlog q.) (10)

Solution Let g′ = gr for somer with gcd(r, q − 1) = 1. (3)

Takea = (g′)x = grx. Then,indg′ a ≡ x ≡ r−1 × (rx) ≡ r−1 indg a (mod q − 1). But
r = indg g′, that is,indg′ a ≡ (indg g′)−1 × (indg a) (mod q − 1). (5)

In other words, two index calculations to the baseg give indg′ a. The total effort of two
index calculations isO(f(log q)). The additional effort associated with one inverse and one
multiplication moduloq − 1 requireso(f(log q)) time. (2)

5 Suppose that in the linear sieve method for computing discrete logarithms inFp, we obtain anm×n system
of congruences, wheren = t + 2M + 2 andm = 2n. Assume that theT (c1, c2) values behave as random
integers (within a bound). Calculate the expected number ofnon-zero entries in them×n coefficient matrix.
You may make use of the fact that, for a positive real numberx, the sum of the reciprocals of the primes6 x
is approximatelyln ln x + B1, whereB1 = 0.2614972128 . . . is known as theMertens constant. (Note that
the expected number of non-zero entries is significantly smaller than the obvious upper boundO(m log p).) (15)

Solution Number the columns of the coefficient matrixA by 0, 1, 2, . . . , t + 2M + 1. Column
0 corresponds to the “prime”−1, Columns1 throught to the small primesp1, p2, . . . , pt, and
Columnst + 1 throught + (2M + 1) to theH + c values for−M 6 c 6 M . Suppose also
that the last row corresponds to thefree relation indg(pj) = 1 for somej. This row has only
one non-zero entry. We now count the number of non-zero entries in the firstm − 1 rows.

The expected number of non-zero entries in Column0 is (m − 1)/2. (2)

For 1 6 j 6 t, the expected number of non-zero entries in Columnj is (m − 1)/pj , since a
randomly chosen integer is divisible by the primepj with probability1/pj . (5)

Finally, consider the submatrix consisting of the firstm− 1 rows and the last2M + 1 columns.
Each row in this submatrix has exactly two non-zero entries corresponding to the two values
c1, c2 for a smoothT (c1, c2). Of course, we allow the possibilityc1 = c2 during sieving (in
which case there is only one non-zero entry in a row), but thissituation occurs with a low
probability, and we expect to get at most only a small constant number of such rows. In view
of this, we neglect the effects of these rows in our final count. (5)

To sum up, the expected number of non-zero entries inA is nearly

1 + (m − 1)/2 + (m − 1)





t
∑

j=1

1

pj



 + 2(m − 1).

By the prime number theorem, thet-th primept is approximately equal tot ln t, and so the sum
∑t

j=1
1
pj

equalsln ln(t ln t) + B1, approximately. Combining these observations, we conclude
that the expected count of non-zero entries inA is nearly (3)

1 + (m − 1)
(

ln ln(t ln t) + B1 + 5/2
)

= 1 + (2t + 4M + 3)
(

ln ln(t ln t) + B1 + 5/2
)

.

(This estimate indicates that we expect onlyΘ(ln ln t) non-zero entries per row, on an average.
Sincet = L[1/2], this count isΘ(ln ln p)—a quantity exponentially tighter than the obvious
upper boundO(log p).)
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