1 Suppose we want to compute the smallest prime $p \geqslant n$, where n is a given positive integer. Assume that $n \gg 1$. The obvious strategy is to test the primality of $n, n+1, n+2, \ldots$ until a prime $n+k$ is found. During the search, it is natural to exclude the integers which are obviously not prime. For example, there is no need to check the primality of even integers, the multiples of 3 , the multiples of 5 , and so on. A sieve can be used to throw away multiples of small primes $p_{1}, p_{2}, \ldots, p_{t}$ and check the primality of only those integers of the form $n+i$ that do not have prime divisors $\leqslant p_{t}$. One takes t between 10 and 1000.
A prime p is called a Sophie Germain prime if $2 p+1$ is also a prime. It is conjectured that there are infinitely many Sophie Germain primes. If p is a Sophie Germain prime, the prime $2 p+1$ is called a safe prime. Safe primes are frequently used in cryptography.
In this exercise, you are asked to extend the above sieve for locating the smallest Sophie Germain prime $p \geqslant n$ for a given positive integer $n \gg 1$. Sieve over the interval $[n, n+M]$.
(a) Determine a value of M such that there is (at least) one Sophie Germain prime of the form $n+i$, $0 \leqslant i \leqslant M$, with high probability. The value of M should be as small as possible.

Solution By the prime number theorem, the number of primes $\leqslant x$ is nearly $x / \ln x$, that is, the probability that a randomly chosen integer $\leqslant x$ is prime is nearly $1 / \ln x$. Under the assumption that x and $2 x+1$ both behave as random integers, the probability that one $n+i$ is a Sophie German prime is nearly $1 /[\ln (n+M) \ln (2(n+M)+1)]$ which is approximately $1 / \ln ^{2} n$. Therefore, we should take $M=\ln ^{2} n$ (or a small multiple of $\ln ^{2} n$).
(b) Describe a sieve to throw away the values of $n+i$ for which either $n+i$ or $2(n+i)+1$ has a prime divisor $\leqslant p_{t}$. Take t as a constant (like 100).

Solution We use an array A indexed by i in the range $0 \leqslant i \leqslant M$. It is not essential to know the exact factorizations of $n+i$. Detecting only that $n+i$ or $2(n+i)+1$ is divisible by any p_{j} suffices to throw away $n+i$.
In view of this, we initialize each array location A_{i} to 1.
Now, take $q=p_{j}$ for some $j \in\{1,2, \ldots, t\}$. The condition $q \mid(n+i)$ implies $i \equiv-n(\bmod q)$, so we set $A_{i}=0$ for all values of i satisfying this congruence.
Moreover, for $q \neq 2$, the condition $q \mid 2(n+i)+1$ implies $i \equiv-n-2^{-1}(\bmod q)$, that is, we set $A_{i}=0$ for all values of i satisfying this second congruence.
After all primes $p_{1}, p_{2}, \ldots, p_{t}$ are considered, we check the primality of $n+i$ and $2(n+i)+1$ only for those i for which we continue to have $A_{i}=1$.
(c) Describe the gain in the running time, that you achieve using the sieve.

Solution Let $P=p_{1} p_{2} \cdots p_{t}$ and $Q=p_{2} p_{3} \cdots p_{t}$. The probability that a random $n+i$ is not divisible by any p_{j} is about $\phi(P) / P$. Likewise, the probability that a random $2(n+i)+1$ is not divisible by any p_{j} is about $\phi(Q) / Q$. Let us assume that the two events "divisibility of $n+i$ by p_{j} " and "divisibility of $2(n+i)+1$ by p_{j} " are independent. Then, we check the primality of $n+i$ and $2(n+i)+1$ for about $(M+1) \frac{\phi(P) \phi(Q)}{P Q}$ values of i. Therefore, the speedup obtained is close to $\frac{P Q}{\phi(P) \phi(Q)}$. For $t=10$, this speedup is about 20 ; for $t=100$, it is about 64 ; and for $t=1000$, it is about 128 . Note that for a suitably chosen t, we may neglect the sieving time which is $\mathrm{O}(t+M \log t)$, that is, $\mathrm{O}\left(t+\left(\log ^{2} n\right)(\log t)\right)$. In contrast, each primality test (like Miller-Rabin) takes time $\mathrm{O}\left(\log ^{3} n\right)$.

2 In Floyd's variant of Pollard's rho method for factoring the integer n, we compute the values of x_{k} and $x_{2 k}$ and then $\operatorname{gcd}\left(x_{k}-x_{2 k}, n\right)$, for $k=1,2,3, \ldots$ Suppose that we instead compute $x_{r k+1}$ and $x_{s k}$ and subsequently $\operatorname{gcd}\left(x_{r k+1}-x_{s k}, n\right)$, for $k=1,2,3, \ldots$, where $r, s \in \mathbb{N}$.
(a) Deduce a condition relating r, s and the length l of the cycle such that this method is guaranteed to detect a cycle of length l.

Solution A cycle of length l is detected if and only if $r k+1 \equiv s k(\bmod l)($ but $r k+1 \neq s k$ as integers) for all sufficiently large k. This condition is equivalent to $(r-s) k \equiv-1(\bmod l)$. This congruence has a solution if and only if $\operatorname{gcd}(r-s, l)=1$.
(Remark: Without the +1 in the first walk, any cycle will be detected as long as $r \neq s$. This is because we now require $r k \equiv s k(\bmod l)$, that is, $(r-s) k \equiv 0(\bmod l)$. This congruence is solvable for k for any value of r and s. The condition $r k \neq s k$ (as integers) demands $r \neq s$.)
(b) Characterize all the pairs (r, s) such that this method is guaranteed to detect cycles of any length.

Solution The condition $\operatorname{gcd}(r-s, l)=1$ for all positive integers l is satisfied if and only if $r-s= \pm 1$.

3 Dixon's method for factoring an integer n can be combined with a sieve in order to reduce its running time to $L[3 / 2]$. Instead of choosing random values of $x_{1}, x_{2}, \ldots, x_{s}$ in the relations, we first choose a random value of x and, for $-M \leqslant c \leqslant M$, we check the smoothness of the integers $(x+c)^{2}(\bmod n)$ over t small primes $p_{1}, p_{2}, \ldots, p_{t}$. As in Dixon's original method, take $t=L[1 / 2]$.
(a) Determine the value of M for which one expects to get a system of the desired size.

Solution For a randomly chosen x, the integer $T(c)=(x+c)^{2}$ rem n is of value $\mathrm{O}(n)$ and so has a probability of $L\left[\frac{-1}{2 \times \frac{1}{2}}\right]=L[-1]$ of being $L[1 / 2]$-smooth. That is, $L[1]$ values of c need to be tried in order to obtain a single relation. Since we require about $2 t$ (which is again $L[1 / 2]$) relations, the value of M should be $L[1] \times L[1 / 2]=L[3 / 2]$.
(b) Describe a sieve over the interval $[-M, M]$ for detecting the smooth values of $(x+c)^{2}(\bmod n)$.

Solution Follow a strategy similar to the QSM. Let $x^{2}=k n+J$ with $J \in\{0,1,2, \ldots, n-1\}$. We have $(x+c)^{2} \equiv x^{2}+2 x c+c^{2} \equiv k n+J+2 x c+c^{2} \equiv T(c)(\bmod n)$, where $T(c)=J+2 x c+c^{2}$.
Use an array A indexed by c in the range $-M \leqslant c \leqslant M$. Initialize $A_{c}=\log |T(c)|$.
For each small prime q and small exponent h, solve the congruence $(x+c)^{2} \equiv k n\left(\bmod q^{h}\right)$. For all values of c in the range $-M \leqslant c \leqslant M$, that satisfy the above congruence, subtract $\log q$ from A_{c}.

When all q and h values are considered, check which array locations A_{c} store values close to 0 . Perform trial divisions on the corresponding $T(c)$ values.
(c) Deduce how you achieve a running time of $L[3 / 2]$ using this sieve.

Solution Follow the analysis of sieving in QSM. Initializing A takes $L[3 / 2]$ time. Solving all the congruences $(x+c)^{2} \equiv k n\left(\bmod q^{h}\right)$ takes $L[1 / 2]$ time. Subtraction of all $\log q$ values takes $L[3 / 2]$ time. Trial division of $L[1 / 2]$ smooth values by $L[1 / 2]$ primes takes $L[1]$ time. Finally, the sparse system with $L[1 / 2]$ variables and $L[1 / 2]$ equations can be solved in $L[1]$ time.

4 (a) Let $h \in \mathbb{F}_{q}^{*}$ have order m (a divisor of $q-1$). Prove that for $a \in \mathbb{F}_{q}^{*}$, the discrete logarithm ind a exists if and only if $a^{m}=1$.

Solution Let $a=h^{k}$ for some $k \in\{0,1,2, \ldots, m-1\}$. Since $\operatorname{ord}(h)=m$, we have $\operatorname{ord}(a)=m / \operatorname{gcd}(m, k)$, that is, $\operatorname{ord}(a) \mid m$, that is, $a^{m}=1$.
The equation $x^{m}-1$ has m (distinct) roots h^{k} for $k=0,1,2, \ldots, m-1$. Since \mathbb{F}_{q} is a field, the polynomial $x^{m}-1$ cannot have more than m roots, that is, $a^{m}=1$ implies that $a=h^{k}$ for some k.
(b) Suppose that g and g^{\prime} are two primitive elements of \mathbb{F}_{q}^{*}. Show that if one can compute discrete logarithms to the base g in $\mathrm{O}(f(\log q))$ time, then one can also compute discrete logarithms to the base g^{\prime} in $\mathrm{O}(f(\log q))$ time. (You may assume that $f(\log q)$ is a super-polynomial expression in $\log q$.)

Solution Let $g^{\prime}=g^{r}$ for some r with $\operatorname{gcd}(r, q-1)=1$.
Take $a=\left(g^{\prime}\right)^{x}=g^{r x}$. Then, $\operatorname{ind}_{g^{\prime}} a \equiv x \equiv r^{-1} \times(r x) \equiv r^{-1} \operatorname{ind}_{g} a(\bmod q-1)$. But $r=\operatorname{ind}_{g} g^{\prime}$, that is, $\operatorname{ind}_{g^{\prime}} a \equiv\left(\operatorname{ind}_{g} g^{\prime}\right)^{-1} \times\left(\operatorname{ind}_{g} a\right)(\bmod q-1)$.
In other words, two index calculations to the base g give $\operatorname{ind}_{g^{\prime}} a$. The total effort of two index calculations is $\mathrm{O}(f(\log q))$. The additional effort associated with one inverse and one multiplication modulo $q-1$ requires $\mathrm{o}(f(\log q))$ time.

5 Suppose that in the linear sieve method for computing discrete logarithms in \mathbb{F}_{p}, we obtain an $m \times n$ system of congruences, where $n=t+2 M+2$ and $m=2 n$. Assume that the $T\left(c_{1}, c_{2}\right)$ values behave as random integers (within a bound). Calculate the expected number of non-zero entries in the $m \times n$ coefficient matrix. You may make use of the fact that, for a positive real number x, the sum of the reciprocals of the primes $\leqslant x$ is approximately $\ln \ln x+\mathcal{B}_{1}$, where $\mathcal{B}_{1}=0.2614972128 \ldots$ is known as the Mertens constant. (Note that the expected number of non-zero entries is significantly smaller than the obvious upper bound $\mathrm{O}(m \log p)$.)

Solution Number the columns of the coefficient matrix A by $0,1,2, \ldots, t+2 M+1$. Column 0 corresponds to the "prime" -1 , Columns 1 through t to the small primes $p_{1}, p_{2}, \ldots, p_{t}$, and Columns $t+1$ through $t+(2 M+1)$ to the $H+c$ values for $-M \leqslant c \leqslant M$. Suppose also that the last row corresponds to the free relation $\operatorname{ind}_{g}\left(p_{j}\right)=1$ for some j. This row has only one non-zero entry. We now count the number of non-zero entries in the first $m-1$ rows.

The expected number of non-zero entries in Column 0 is $(m-1) / 2$.
For $1 \leqslant j \leqslant t$, the expected number of non-zero entries in Column j is $(m-1) / p_{j}$, since a randomly chosen integer is divisible by the prime p_{j} with probability $1 / p_{j}$.
Finally, consider the submatrix consisting of the first $m-1$ rows and the last $2 M+1$ columns. Each row in this submatrix has exactly two non-zero entries corresponding to the two values c_{1}, c_{2} for a smooth $T\left(c_{1}, c_{2}\right)$. Of course, we allow the possibility $c_{1}=c_{2}$ during sieving (in which case there is only one non-zero entry in a row), but this situation occurs with a low probability, and we expect to get at most only a small constant number of such rows. In view of this, we neglect the effects of these rows in our final count.

To sum up, the expected number of non-zero entries in A is nearly

$$
1+(m-1) / 2+(m-1)\left(\sum_{j=1}^{t} \frac{1}{p_{j}}\right)+2(m-1)
$$

By the prime number theorem, the t-th prime p_{t} is approximately equal to $t \ln t$, and so the sum $\sum_{j=1}^{t} \frac{1}{p_{j}}$ equals $\ln \ln (t \ln t)+\mathcal{B}_{1}$, approximately. Combining these observations, we conclude that the expected count of non-zero entries in A is nearly

$$
\begin{aligned}
& 1+(m-1)\left(\ln \ln (t \ln t)+\mathcal{B}_{1}+5 / 2\right) \\
= & 1+(2 t+4 M+3)\left(\ln \ln (t \ln t)+\mathcal{B}_{1}+5 / 2\right)
\end{aligned}
$$

(This estimate indicates that we expect only $\Theta(\ln \ln t)$ non-zero entries per row, on an average. Since $t=L[1 / 2]$, this count is $\Theta(\ln \ln p)$-a quantity exponentially tighter than the obvious upper bound $\mathrm{O}(\log p)$.)

