CS60082 Computational Number Theory, Spring 2008
Mid-semester examination: Solutions

[ This test is open-notes. Answer all questions. Be brief aadige]

1 Compute all the simultaneous solutions of the followinggroences. (15

5z = 3 (mod 47),
322 = 5 (mod 49).

Solution  We first solve5z = 3 (mod 47). This requires computing=! x 3 (mod 47). One
may formally run the extended gcd algorithm &7 to that effect. But, by simple inspection,
one obtaing = 19 x 5+ (—2) x 47, 05~ = 19 (mod 47), that is, the given congruence has

the solutionz = 19 x 3 (mod 47), thatis| = = 10 (mod 47) |.

Next we solve3z? = 5 (mod 49). We have49 = 72, so we solve3z? = 5 (mod 7) first. This
impliesz? =371 x5 =5 x5 =4 (mod 7). Thatis,z = 2,5 (mod 7). Next, we lift these
solutions to solutions modul®. We havef (z) = 3225, so thatf’(z) = 6z. Alifted solution
isz1 = xo + 7t (mod 49), wherezy = 2,5 and f/(zo)t = —@ (mod 7). Forzy = 2, we
havel2t = —1 (mod 7), thatis,t = 4 (mod 7), so thatz; = 2 +4 x 7 = 30 (mod 49).
Forzy = 5, we have30t = —10 (mod 7), that is,t = 2 (mod 7), sothatr; =5+2 x 7 =
19 (mod 49). Thus, the two solutions &z = 5 (mod 49) are‘ x = 19,30 (mod 49) ‘
Finally, we combine the solutions by the CRT. We hadex 47 + (—23) x 49 = 1, that is,

4971 = —23 = 24 (mod 47) and47~! = 24 (mod 49). Thus, by CRT, the simultaneous
solutions arer = 24 x 49 x a + 24 x 47 x b (mod 47 x 49), wherea = 10 andb = 19, 30.

Plugging in the values giv#s: = 950, 1843 (mod 2303) ‘

2 Leto(n) denote the sum of positive integral divisorsiofe N. Letn = pq with two distinct primesp, q.
Devise a polynomial-time algorithm to computg; from the knowledge of: ando (n). (10

Solution We haves(pg) =1+ p+q+pg=1+p+q+n.If nando(n) are provided, we
obtainpg andp + ¢. Finally, p, ¢ can be obtained by solving a quadratic equation.

3 Letn = pq be a product of two distindtnown primesp, g. Assume thag~! (mod p) is available.

Suppose we want to compute= ¢ (mod n) fora € Z} and0 < e < ¢(n). To that effect, we first compute
ep = erem (p — 1) ande, = e rem (¢ — 1) and then the modular exponentiatidps= a“» (mod p) and
by = a% (mod g). Finally, computet = ¢~1(b, — b,) (mod p).

(@ Prove thab = b, + tq (mod n). (10

Solution  We haveb, = b (mod p) andb, = b (mod ¢), so we have to combine these two
values by the CRT. Lef = b, + tq. Then,3 = b, (mod q). Also, tq = b, — by (mod p), SO
B = by + (b, — by) = by (mod p). Therefore,S = b (mod pg).

(b) Suppose thap, ¢ are both of bit sizes roughly half of that @f. Explain how computing in this
method speeds up the exponentiation process. You may asdassécal (that is, high-school) arithmetic
for the implementation of products and Euclidean division. 5

Solution  Let s = |n| be the bit size ofn. We than have the bit sizédp| ~ s/2 and

lg| =~ s/2. Since modular exponentiation is done in cubic time, coinguthe two modular
exponentiations to obtait), andb, takes a total time which is abouif4-th that of computing
b = a° (mod n) directly. The remaining operations in the modified algaritban be done in
0(s?) time. Thus, we get a speed-up of abdut
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4 Imitate the binary gcd algorithm in order to compute the Basgmbol (£). (20)

Solution  Since we can extract powers Dfeasily froma, we assume that is odd. For the
Jacobi symbolp is odd too. Ifa = b, then($) = 0. If a < b, we use the quadratic reciprocity

law to write (¢) in terms of(g). So it remains only to analyze the case(§ with a, b odd
anda > b. Leta = a —b. We writeaw = 2"d/ with » € N andd’ odd. If r is even, then

!

(4) = (%), whereas ifr is odd, then($) = (3) (%) = (—1)®~V/* (). So, the problem

reduces to computiné%’) with botha’, b odd.

5 (a) Compute the continued fraction expansion/Gi. 5
Solution
§=V5=2236..., ap = &) =2
§1=£0ia02\/51_2=\/5+2:4.236..., ap = &) =4
f2=£1ia12\/51_2:\/5—1—2:4.236..., as = |&] =

Thus,5 = (2,4,4,4,...) = (2,4).

(b) Itis known that all the solutions af?> — 5y = 1 with z,y > 0 are of the formz = h,, andy = k,,
whereh,, /k, is a convergent ta/5. Find the solution of:> — 532 = 1 with the smallest possiblg > 0.  (5)

Solution  The first convergent isy = Z—g = (2) = 2/1, thatis,hy = 2 andky = 1. But
h§ — 5k3 = —1. Then, we have, = % = (2,4) = 2+ § = §, thatis,h; = 9 andk; = 4.

We haveh? — 5k? = 1. Sincekg < k1 < ko < k3 < -- -, the smallest solution i€, 4).

(¢) Let (a,b) denote the smallest solution obtained in Part (b). Definestiience of pair&e,,, y,,) of
positive integers recursively as follows.

(z0,%0) = (a,b) and
(Tnyyn) = (axp—1+ dbyn—1,brn_1 + ay,—1) for n > 1.

Prove that eackz,,, y,,) is a solution ofr? — 532 = 1. (In particular, there are infinitely many solutions in
positive integers of theell equation 22 — 5y% = 1.) (5)

Solution We proceed by induction on. Forn = 0, (xo,y0) = (a,b) = (9,4) is a solution of
z? — 5y = 1 by Part (b). So assume that> 1 and thatr? 5y2_, = 1. Butthen

n—1"
l’i - 5y72; = (axn—l + 5byn—1)2 - 5(bxn—1 + ayn—l)2
= az(xi_l - 51/121—1) - 552(553—1 - 5%%—1)
= a? -5 =1.
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