[This test is open-notes. Answer all questions. Be brief and precise.]

1 Compute all the simultaneous solutions of the following congruences.

$$
\begin{align*}
5 x & \equiv 3(\bmod 47) \tag{15}\\
3 x^{2} & \equiv 5(\bmod 49)
\end{align*}
$$

Solution We first solve $5 x \equiv 3(\bmod 47)$. This requires computing $5^{-1} \times 3(\bmod 47)$. One may formally run the extended gcd algorithm on 5,47 to that effect. But, by simple inspection, one obtains $1=19 \times 5+(-2) \times 47$, so $5^{-1} \equiv 19(\bmod 47)$, that is, the given congruence has the solution $x \equiv 19 \times 3(\bmod 47)$, that is, $x \equiv 10(\bmod 47)$.
Next we solve $3 x^{2} \equiv 5(\bmod 49)$. We have $49=7^{2}$, so we solve $3 x^{2} \equiv 5(\bmod 7)$ first. This implies $x^{2} \equiv 3^{-1} \times 5 \equiv 5 \times 5 \equiv 4(\bmod 7)$. That is, $x \equiv 2,5(\bmod 7)$. Next, we lift these solutions to solutions modulo 49. We have $f(x)=3 x^{2}-5$, so that $f^{\prime}(x)=6 x$. A lifted solution is $x_{1} \equiv x_{0}+7 t(\bmod 49)$, where $x_{0}=2,5$ and $f^{\prime}\left(x_{0}\right) t \equiv-\frac{f\left(x_{0}\right)}{7}(\bmod 7)$. For $x_{0}=2$, we have $12 t \equiv-1(\bmod 7)$, that is, $t \equiv 4(\bmod 7)$, so that $x_{1} \equiv 2+4 \times 7 \equiv 30(\bmod 49)$. For $x_{0}=5$, we have $30 t \equiv-10(\bmod 7)$, that is, $t \equiv 2(\bmod 7)$, so that $x_{1} \equiv 5+2 \times 7 \equiv$ $19(\bmod 49)$. Thus, the two solutions of $3 x^{2} \equiv 5(\bmod 49)$ are $x \equiv 19,30(\bmod 49)$.
Finally, we combine the solutions by the CRT. We have $24 \times 47+(-23) \times 49=1$, that is, $49^{-1} \equiv-23 \equiv 24(\bmod 47)$ and $47^{-1} \equiv 24(\bmod 49)$. Thus, by CRT, the simultaneous solutions are $x \equiv 24 \times 49 \times a+24 \times 47 \times b(\bmod 47 \times 49)$, where $a=10$ and $b=19,30$. Plugging in the values gives $x \equiv 950,1843(\bmod 2303)$.

2 Let $\sigma(n)$ denote the sum of positive integral divisors of $n \in \mathbb{N}$. Let $n=p q$ with two distinct primes p, q. Devise a polynomial-time algorithm to compute p, q from the knowledge of n and $\sigma(n)$.

Solution We have $\sigma(p q)=1+p+q+p q=1+p+q+n$. If n and $\sigma(n)$ are provided, we obtain $p q$ and $p+q$. Finally, p, q can be obtained by solving a quadratic equation.

3 Let $n=p q$ be a product of two distinct known primes p, q. Assume that $q^{-1}(\bmod p)$ is available.
Suppose we want to compute $b \equiv a^{e}(\bmod n)$ for $a \in \mathbb{Z}_{n}^{*}$ and $0 \leqslant e<\phi(n)$. To that effect, we first compute $e_{p}=e \operatorname{rem}(p-1)$ and $e_{q}=e \operatorname{rem}(q-1)$ and then the modular exponentiations $b_{p} \equiv a^{e_{p}}(\bmod p)$ and $b_{q} \equiv a^{e_{q}}(\bmod q)$. Finally, compute $t \equiv q^{-1}\left(b_{p}-b_{q}\right)(\bmod p)$.
(a) Prove that $b \equiv b_{q}+t q(\bmod n)$.

Solution We have $b_{p} \equiv b(\bmod p)$ and $b_{q} \equiv b(\bmod q)$, so we have to combine these two values by the CRT. Let $\beta=b_{q}+t q$. Then, $\beta \equiv b_{q}(\bmod q)$. Also, $t q \equiv b_{p}-b_{q}(\bmod p)$, so $\beta \equiv b_{q}+\left(b_{p}-b_{q}\right) \equiv b_{p}(\bmod p)$. Therefore, $\beta \equiv b(\bmod p q)$.
(b) Suppose that p, q are both of bit sizes roughly half of that of n. Explain how computing b in this method speeds up the exponentiation process. You may assume classical (that is, high-school) arithmetic for the implementation of products and Euclidean division.

Solution Let $s=|n|$ be the bit size of n. We than have the bit sizes $|p| \approx s / 2$ and $|q| \approx s / 2$. Since modular exponentiation is done in cubic time, computing the two modular exponentiations to obtain b_{p} and b_{q} takes a total time which is about $1 / 4$-th that of computing $b \equiv a^{e}(\bmod n)$ directly. The remaining operations in the modified algorithm can be done in $\mathrm{O}\left(s^{2}\right)$ time. Thus, we get a speed-up of about 4 .

4 Imitate the binary gcd algorithm in order to compute the Jacobi symbol $\left(\frac{a}{b}\right)$.

Solution Since we can extract powers of 2 easily from a, we assume that a is odd. For the Jacobi symbol, b is odd too. If $a=b$, then $\left(\frac{a}{b}\right)=0$. If $a<b$, we use the quadratic reciprocity law to write $\left(\frac{a}{b}\right)$ in terms of $\left(\frac{b}{a}\right)$. So it remains only to analyze the case of $\left(\frac{a}{b}\right)$ with a, b odd and $a>b$. Let $\alpha=a-b$. We write $\alpha=2^{r} a^{\prime}$ with $r \in \mathbb{N}$ and a^{\prime} odd. If r is even, then $\left(\frac{a}{b}\right)=\left(\frac{a^{\prime}}{b}\right)$, whereas if r is odd, then $\left(\frac{a}{b}\right)=\left(\frac{2}{b}\right)\left(\frac{a^{\prime}}{b}\right)=(-1)^{\left(b^{2}-1\right) / 8}\left(\frac{a^{\prime}}{b}\right)$. So, the problem reduces to computing $\left(\frac{a^{\prime}}{b}\right)$ with both a^{\prime}, b odd.

5 (a) Compute the continued fraction expansion of $\sqrt{5}$.

Solution

$$
\begin{array}{rlrl}
\xi_{0}=\sqrt{5} & =2.236 \ldots, & a_{0}=\left\lfloor\xi_{0}\right\rfloor & =2 \\
\xi_{1}=\frac{1}{\xi_{0}-a_{0}}=\frac{1}{\sqrt{5}-2}=\sqrt{5}+2=4.236 \ldots, & a_{1}=\left\lfloor\xi_{1}\right\rfloor=4 \\
\xi_{2}=\frac{1}{\xi_{1}-a_{1}}=\frac{1}{\sqrt{5}-2}=\sqrt{5}+2=4.236 \ldots, & a_{2}=\left\lfloor\xi_{2}\right\rfloor=4
\end{array}
$$

Thus, $\sqrt{5}=\langle 2,4,4,4, \ldots\rangle=\langle 2, \overline{4}\rangle$.
(b) It is known that all the solutions of $x^{2}-5 y^{2}=1$ with $x, y>0$ are of the form $x=h_{n}$ and $y=k_{n}$, where h_{n} / k_{n} is a convergent to $\sqrt{5}$. Find the solution of $x^{2}-5 y^{2}=1$ with the smallest possible $y>0$.

Solution The first convergent is $r_{0}=\frac{h_{0}}{k_{0}}=\langle 2\rangle=2 / 1$, that is, $h_{0}=2$ and $k_{0}=1$. But $h_{0}^{2}-5 k_{0}^{2}=-1$. Then, we have $r_{1}=\frac{h_{1}}{k_{1}}=\langle 2,4\rangle=2+\frac{1}{4}=\frac{9}{4}$, that is, $h_{1}=9$ and $k_{1}=4$. We have $h_{1}^{2}-5 k_{1}^{2}=1$. Since $k_{0} \leqslant k_{1}<k_{2}<k_{3}<\cdots$, the smallest solution is $(9,4)$.
(c) Let (a, b) denote the smallest solution obtained in Part (b). Define the sequence of pairs $\left(x_{n}, y_{n}\right)$ of positive integers recursively as follows.

$$
\begin{aligned}
\left(x_{0}, y_{0}\right) & =(a, b) \text { and } \\
\left(x_{n}, y_{n}\right) & =\left(a x_{n-1}+5 b y_{n-1}, b x_{n-1}+a y_{n-1}\right) \text { for } n \geqslant 1
\end{aligned}
$$

Prove that each $\left(x_{n}, y_{n}\right)$ is a solution of $x^{2}-5 y^{2}=1$. (In particular, there are infinitely many solutions in positive integers of the Pell equation $x^{2}-5 y^{2}=1$.)

Solution We proceed by induction on n. For $n=0,\left(x_{0}, y_{0}\right)=(a, b)=(9,4)$ is a solution of $x^{2}-5 y^{2}=1$ by Part (b). So assume that $n \geqslant 1$ and that $x_{n-1}^{2}-5 y_{n-1}^{2}=1$. But then

$$
\begin{aligned}
x_{n}^{2}-5 y_{n}^{2} & =\left(a x_{n-1}+5 b y_{n-1}\right)^{2}-5\left(b x_{n-1}+a y_{n-1}\right)^{2} \\
& =a^{2}\left(x_{n-1}^{2}-5 y_{n-1}^{2}\right)-5 b^{2}\left(x_{n-1}^{2}-5 y_{n-1}^{2}\right) \\
& =a^{2}-5 b^{2}=1 .
\end{aligned}
$$

