
CS60082 Computational Number Theory, Spring 2008

Mid-semester examination: Solutions

[This test is open-notes. Answer all questions. Be brief and precise.]

1 Compute all the simultaneous solutions of the following congruences. (15)

5x ≡ 3 (mod 47),

3x2 ≡ 5 (mod 49).

Solution We first solve5x ≡ 3 (mod 47). This requires computing5−1 × 3 (mod 47). One
may formally run the extended gcd algorithm on5, 47 to that effect. But, by simple inspection,
one obtains1 = 19× 5 + (−2)× 47, so5−1 ≡ 19 (mod 47), that is, the given congruence has

the solutionx ≡ 19 × 3 (mod 47), that is, x ≡ 10 (mod 47) .

Next we solve3x2 ≡ 5 (mod 49). We have49 = 72, so we solve3x2 ≡ 5 (mod 7) first. This
impliesx2 ≡ 3−1 × 5 ≡ 5 × 5 ≡ 4 (mod 7). That is,x ≡ 2, 5 (mod 7). Next, we lift these
solutions to solutions modulo49. We havef(x) = 3x2−5, so thatf ′(x) = 6x. A lifted solution
is x1 ≡ x0 + 7t (mod 49), wherex0 = 2, 5 andf ′(x0)t ≡ − f(x0)

7 (mod 7). Forx0 = 2, we
have12t ≡ −1 (mod 7), that is,t ≡ 4 (mod 7), so thatx1 ≡ 2 + 4 × 7 ≡ 30 (mod 49).
For x0 = 5, we have30t ≡ −10 (mod 7), that is,t ≡ 2 (mod 7), so thatx1 ≡ 5 + 2 × 7 ≡
19 (mod 49). Thus, the two solutions of3x2 ≡ 5 (mod 49) are x ≡ 19, 30 (mod 49) .

Finally, we combine the solutions by the CRT. We have24 × 47 + (−23) × 49 = 1, that is,
49−1 ≡ −23 ≡ 24 (mod 47) and47−1 ≡ 24 (mod 49). Thus, by CRT, the simultaneous
solutions arex ≡ 24 × 49 × a + 24 × 47 × b (mod 47 × 49), wherea = 10 andb = 19, 30.

Plugging in the values givesx ≡ 950, 1843 (mod 2303) .

2 Let σ(n) denote the sum of positive integral divisors ofn ∈ N. Let n = pq with two distinct primesp, q.
Devise a polynomial-time algorithm to computep, q from the knowledge ofn andσ(n). (10)

Solution We haveσ(pq) = 1 + p + q + pq = 1 + p + q + n. If n andσ(n) are provided, we
obtainpq andp + q. Finally, p, q can be obtained by solving a quadratic equation.

3 Let n = pq be a product of two distinctknown primesp, q. Assume thatq−1 (mod p) is available.

Suppose we want to computeb ≡ ae (mod n) for a ∈ Z
∗

n and0 6 e < φ(n). To that effect, we first compute
ep = e rem (p − 1) andeq = e rem (q − 1) and then the modular exponentiationsbp ≡ aep (mod p) and
bq ≡ aeq (mod q). Finally, computet ≡ q−1(bp − bq) (mod p).

(a) Prove thatb ≡ bq + tq (mod n). (10)

Solution We havebp ≡ b (mod p) andbq ≡ b (mod q), so we have to combine these two
values by the CRT. Letβ = bq + tq. Then,β ≡ bq (mod q). Also, tq ≡ bp − bq (mod p), so
β ≡ bq + (bp − bq) ≡ bp (mod p). Therefore,β ≡ b (mod pq).

(b) Suppose thatp, q are both of bit sizes roughly half of that ofn. Explain how computingb in this
method speeds up the exponentiation process. You may assumeclassical (that is, high-school) arithmetic
for the implementation of products and Euclidean division. (5)

Solution Let s = |n| be the bit size ofn. We than have the bit sizes|p| ≈ s/2 and
|q| ≈ s/2. Since modular exponentiation is done in cubic time, computing the two modular
exponentiations to obtainbp andbq takes a total time which is about1/4-th that of computing
b ≡ ae (mod n) directly. The remaining operations in the modified algorithm can be done in
O(s2) time. Thus, we get a speed-up of about4.
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4 Imitate the binary gcd algorithm in order to compute the Jacobi symbol
(

a
b

)

. (10)

Solution Since we can extract powers of2 easily froma, we assume thata is odd. For the
Jacobi symbol,b is odd too. Ifa = b, then

(

a
b

)

= 0. If a < b, we use the quadratic reciprocity

law to write
(

a
b

)

in terms of
(

b
a

)

. So it remains only to analyze the case of
(

a
b

)

with a, b odd

anda > b. Let α = a − b. We writeα = 2ra′ with r ∈ N anda′ odd. If r is even, then
(a

b

)

=
(

a′

b

)

, whereas ifr is odd, then
(a

b

)

=
(

2
b

) (

a′

b

)

= (−1)(b
2
−1)/8

(

a′

b

)

. So, the problem

reduces to computing
(

a′

b

)

with botha′, b odd.

5 (a) Compute the continued fraction expansion of
√

5. (5)

Solution

ξ0 =
√

5 = 2.236 . . . , a0 = ⌊ξ0⌋ = 2

ξ1 =
1

ξ0 − a0
=

1√
5 − 2

=
√

5 + 2 = 4.236 . . . , a1 = ⌊ξ1⌋ = 4

ξ2 =
1

ξ1 − a1
=

1√
5 − 2

=
√

5 + 2 = 4.236 . . . , a2 = ⌊ξ2⌋ = 4

· · ·

Thus,
√

5 = 〈2, 4, 4, 4, . . .〉 = 〈2, 4〉.

(b) It is known that all the solutions ofx2 − 5y2 = 1 with x, y > 0 are of the formx = hn andy = kn,
wherehn/kn is a convergent to

√
5. Find the solution ofx2 − 5y2 = 1 with the smallest possibley > 0. (5)

Solution The first convergent isr0 = h0

k0
= 〈2〉 = 2/1, that is,h0 = 2 andk0 = 1. But

h2
0 − 5k2

0 = −1. Then, we haver1 = h1

k1
= 〈2, 4〉 = 2 + 1

4 = 9
4 , that is,h1 = 9 andk1 = 4.

We haveh2
1 − 5k2

1 = 1. Sincek0 6 k1 < k2 < k3 < · · · , the smallest solution is(9, 4).

(c) Let (a, b) denote the smallest solution obtained in Part (b). Define thesequence of pairs(xn, yn) of
positive integers recursively as follows.

(x0, y0) = (a, b) and

(xn, yn) = (axn−1 + 5byn−1, bxn−1 + ayn−1) for n > 1.

Prove that each(xn, yn) is a solution ofx2 − 5y2 = 1. (In particular, there are infinitely many solutions in
positive integers of thePell equation x2 − 5y2 = 1.) (5)

Solution We proceed by induction onn. Forn = 0, (x0, y0) = (a, b) = (9, 4) is a solution of
x2 − 5y2 = 1 by Part (b). So assume thatn > 1 and thatx2

n−1 − 5y2
n−1 = 1. But then

x2
n − 5y2

n = (axn−1 + 5byn−1)
2 − 5(bxn−1 + ayn−1)

2

= a2(x2
n−1 − 5y2

n−1) − 5b2(x2
n−1 − 5y2

n−1)

= a2 − 5b2 = 1.
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