CS60082 Computational Number Theory, Spring 2008

End-semester examination: Solutions

[ This test is open-notes. Answer all questions. Be brief aadige]

1 Letn be an odd composite integer agetl(a, n) = 1. Prove the following assertions.
(@) If nis an Euler pseudoprime to basgthenn is a (Fermat) pseudoprime to base 5

Solution Letn be an Euler pseudoprime to baseThena("~1/2 = (£) (mod n). Since(£) = =+1,
squaring gives™ ! = 1 (mod n), thatis,n is a pseudoprime to bage

(b) There exists a base to whichis not an Euler pseudoprime. (15)

Solution  In view of Part (a), it suffices to concentrate only on Carraelnumbers:. We can write
n = p1ps - - - p, With pairwise distinct odd primesy, po, . . ., p, r = 3, and with(p; — 1) | (n — 1) for
alli=1,2,...,r. We now consider two cases.

Case 1: All ;;fl are even.
We choose a base € Z? such that(z%l) = —1, whereas(ﬁ) = +1fori = 2,3,...,r. Bythe
definition of the Jacobi symbol, we ha¢&) = —1. By Euler’s criterion,a”~1/2 = —1 (mod py).

Since;‘l:l1 = &:12))//22 is even by hypothesis, we haw& /2 = 1 (mod p;). On the other hand, for

i =2,3,...,r, we havea”~1/2 = 1 (mod p;), thatis,a(”1/2 = 1 (mod p;). By CRT, we then
havea"~1/2 = 1 (mod n), thatis,a® /2 £ (£) (mod n), that is,n is not an Euler pseudoprime
to baseu.

Case2: Some'— is odd.

Without loss of generality, assume thg;t‘_—ll is odd. Again takex € Z? with (z%) = —1 and
(pi) = +1fori = 2,3,...,7. By the definition of the Jacobi symbol, we then hgye = —1. On
the other hand, by Euler’s criterion, we hav@ /2 = —1 (mod p;) anda("~1/2 = 1 (mod p;) for
i=2,3,...,r. By CRT, we conclude that™—1)/2 # +1 (mod n), that is,a(n=1)/2 £ (%) (mod n),
that is,n is not an Euler pseudoprime to base

(¢) nis an Euler pseudoprime to at most half the basé&in 5

Solution  Suppose that is an Euler pseudoprime to the basesas,...,a; € Z7 only. Let
a be a base to which is not an Euler pseudoprime. (Such a base exists by Part {e)have
am=1/2 £ (£) (mod n). On the other handy!" /% = (%) (mod n) fori = 1,2,...,¢. It
follows that (aq;) " 1/ = " D/2" /2 2 (£) (%) = (%) (mod n), that is,n is not an
Euler pseudoprime to each of the bases that is, there are at leasbases to which is not an Euler
pseudoprime.

2 ThelLehmer sequence with parameters;, b is defined as

170 = 07
171 = 17
Up = Up_1—0bUy_o if m>2iseven

Un = aUp—_1 —bU,_o if m > 3is odd
Let o, 3 be the roots of? — \/ax + b.

= _ [ (@™ —=pm)/(e® - p%) if miseven,
(@ Prove thal/,, = {(am — ™) /(a — B) it m is odd. (10)
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Solution We proceed by induction am. Form = 0, we havely = (a” — 3°)/(a? — 3?) = 0, whereas
form = 1, we havel/; = (a! — 81)/(a — 3) = 1. Now suppose thadlz, = (a2¥ — %) /(a? — 3?)
andUsi11 = (a1 — g2k+1) /(o — ) for somek > 0. Sincea, 3 are roots ofr? — \/az + b, we
havea + 3 = \/a anda3 = b. But then

Usiro = Uspyr — bUsy

<a2k+1 _52k+1) . <a2k —»3%)
a—f3 a? — 32

(o + B)(a®* ! — B2HY) — b(a®F — 57F)

042 _ 52
(a2k+2 _ 62k+2) + (a2k _ ﬂQk)(Oéﬁ _ b)
- o? — 32
o2k +2 _ G2k+2
= o? — 32
On the other hand,
Uskrs = aUzpia — bUspi1

2k+2 _ 32k+2 2k+1 _ g2k+1
Y et - e W (et - i
a? — (32 a—pf3

a(a2k+2 _ 62k+2) _ b(a + ﬁ)(anJrl _ 62k+1)

a2 _ 62
(a + ﬁ)Q(a%"'Q _ 52k+2) _ Ozﬁ(oz 4 6)(a2k+1 _ 62k+1)
- o? — 32
(a 4 ﬁ)(QQkJrQ _ 52k+2) _ OLB(OLQkJrl _ 62k+1)
e - ﬁ

a2k +3 _ g2k+3

a—p3

(b) Let A = a — 4b andn a positive integer wittged(n, 2aA) = 1. We calln is Lehmer pseudoprime
with parameters, b if Un_ (a2) = 0 (mod n). Prove that: is a Lehmer pseudoprime with parameters

n

if and only if n is a Lucas pseudoprime with parameterab. (10)

Solution  For the Lehmer sequence with parameters we taken = @ andg = @_
The discriminant isA = a — 4b. On the other hand, for the Lucas sequence with parametets the
roots of the characteristic equation are= “*7“122_4‘“’ andg’ = “‘7“122_4“1’. Also the discriminant is
A’ = a? — 4ab. Thatis,a’ = aa, # = /ap andA’ = aA. Finally, note thats — (22) is even.

Therefore,
_ an (%) — gn=(22)
U"_(%) - a? — 32
() ()
- (@+p)(a-P)
(\/5)—["—(%/)] <o/"‘(%/) 5/"‘(%)
- Va(a = B)
(a3 ()
(a3 o —
_ e
(vay~ ()

whereU,, is them-th term in the corresponding Lucas sequence. Sidéa,n) = 1, it follows that
Uni(%) = 0 (mod n) if and only if U;—(A—’) = 0 (mod n).
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3 Prove that forn > 2, the Fermat numbef,, = 22" + 1 is prime if and only if5(/»=1)/2 = —1 (mod f,,). (10)

Solution  The condition5(f==1/2 = —1 (mod f,,) implies thatord;, (5) = fm — 1, that s, f,,
is prime. Conversely, suppose that is prime. By Euler’s criterions(fm—1/2 = ( ) (mod fp,).

“() -

B

ot

But by the quadratic reciprocity la ,f?) = (=1)m=D6E-1)/4 (T"L) = (

() = (252 = e = () = 1

4 (a) Suppose you are given a black-box that, given two posititegigrsn andk, returns in one unit of time
the decision whethet has a factorl in the range2 < d < k. Using this black-box, devise an algorithm to

factor a positive integer in polynomial (inlog n) time. (10)
Solution We implement a binary search procedure for locating a niwiatfactor of n. The steps are
listed below. We maintain two bounds U with L < U.
If the black-box returns ‘no’ for input n,n—1, return ‘nis prinme’.
Set L=2 and U=n—1.
while (L<U) {
Set M= (L+U)/2.
If the black-box returns ‘yes’ for input n,M, set U=M,
else set L=M+1.
}
return L.
(b) Deduce the running time of your algorithm. 5B

Solution Thewhi | e loop runs forO(logn) times. Each iteration of the loop takeglog n) time. Thus
the running time of our algorithm ig (log” n).

5 Write a pseudocode implementing Floyd’s variant of Polkardo method with block ged calculations.  (10)

Solution Suppose that we use a blockigfcd’s.

Initialize z and y to a random el ement of Z,.
Also initialize a running product p=1 and a running count k=0.
Finally, initialize values of z,y before the current block: 2z’ =z and 3y =y.
while (1) {
Update z = f(z) and y = f(f(y)).
Update the product p=px (x —y) (modn) and the count k==k+ 1.
if k equals t {
Conpute the gcd d=ged(p,n).
if dequals 1 {
Prepare for the next block: p=1, k=0, 2’ ==z and ¢ =y.
} else {
CGo back to the start of the current block: z=2" and y=1'.
while (1) {
Recal cul ate z = f(z) and y = f(f(v)).
Conmput e i ndividual gcd d=ged(n,z —vy).
if (d>1) return d.

6 (&) Explain how sieving is carried out in connection with the tiplé-polynomial quadratic sieve method,
that is, for the general polynomidl(c) = U + 2Vec + Wc? with V2 — UW = n. (10)

— Page 3of4 —



Solution  We initialize an arrayA indexed in the range-M < ¢ < M. The array locatiord. is
initialized tolog |T'(¢)|.

Let p be a small prime in the factor base. pf= 2, we obtain the multiplicityn. of 2 in T'(¢) by bit
operations. We subtraet, log 2 from A.. (The array locatiom. may be initialized after all factors of
2 are extracted frorff’(c).)

Now letp be an odd prime antdla small exponent. We hav®T'(c) = (Wc+ V)% —n, so the condition
p" | T(c) is equivalent tqWe + V)2 = n (mod p"). Sincen is a quadratic residue modujg this
congruence has exactly two solutions forFor i = 1, these solutions are obtained by a root finding
algorithm inZ,,, whereas foih > 1, the solutions are obtained by Hensel lifting. lgtc, be the two
solutions. For eachin the range-M < ¢ < M with ¢ = ¢;, ¢ (mod p"), we subtractog p from the
array location4..

After all small primesp in the factor base are considered, we look at the valuesiefti If A, ~ 0 for
somec, we factorT'(c) by trial division by factor base primes and obtain a relation

(b) Assume that the factor base consistd.0f /2] primes and the sieving interval is of siZgl]. Deduce
that the sieving process can be completed [ifj time. (20)

Solution  Each value off'(¢) and its (approximate) logarithm can be computed in time pagial in
logn. Thus the arrayl can be initialized in_[1] time.

The multiplicity m.. of the primep = 2 in eachT’(c) can be obtained im(logn) time and subsequently
a suitable right shift operation removes the factorg éfom eachT'(c¢) again inO(logn) time. Since
there ar&M + 1 = L[1] values ofT’(c) to consider, this step takdg1] time.

For each small prime powerf*, one first obtains the two solutions, c,. This is doable in (probabilistic)
polynomial time. Subsequently, one updates appropriatginsA.. For a giverp”, the total time for
subtraction oflog p from all appropriate locations i (2M + 1)/p". Summing over all values of, h
gives a total running time ab(log n) M which is L[1].

Finally, we scan over the entire arrayin 20 + 1 = L[1] time. We expecL|[1/2] relations. For each
such relation, trial division by.[1/2] primes in the factor base requiré$l /2] time. Thus, the time for
factoring all smooth values @ (¢) is L[1/2] x L[1/2] = L[1].
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