CS60082 Computational Number Theory, Spring 2008

End-semester examination: Solutions

[This test is open-notes. Answer all questions. Be brief and precise.]

1 Let n be an odd composite integer and $\operatorname{gcd}(a, n)=1$. Prove the following assertions.
(a) If n is an Euler pseudoprime to base a, then n is a (Fermat) pseudoprime to base a.

Solution Let n be an Euler pseudoprime to base a. Then $a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right)(\bmod n)$. Since $\left(\frac{a}{n}\right)= \pm 1$, squaring gives $a^{n-1} \equiv 1(\bmod n)$, that is, n is a pseudoprime to base a.
(b) There exists a base to which n is not an Euler pseudoprime.

Solution In view of Part (a), it suffices to concentrate only on Carmichael numbers n. We can write $n=p_{1} p_{2} \cdots p_{r}$ with pairwise distinct odd primes $p_{1}, p_{2}, \ldots, p_{r}, r \geqslant 3$, and with $\left(p_{i}-1\right) \mid(n-1)$ for all $i=1,2, \ldots, r$. We now consider two cases.

Case 1: All $\frac{n-1}{p_{i}-1}$ are even.
We choose a base $a \in \mathbb{Z}_{n}^{*}$ such that $\left(\frac{a}{p_{1}}\right)=-1$, whereas $\left(\frac{a}{p_{i}}\right)=+1$ for $i=2,3, \ldots, r$. By the definition of the Jacobi symbol, we have $\left(\frac{a}{n}\right)=-1$. By Euler's criterion, $a^{\left(p_{1}-1\right) / 2} \equiv-1\left(\bmod p_{1}\right)$. Since $\frac{n-1}{p_{1}-1}=\frac{(n-1) / 2}{\left(p_{1}-2\right) / 2}$ is even by hypothesis, we have $a^{(n-1) / 2} \equiv 1\left(\bmod p_{1}\right)$. On the other hand, for $i=2,3, \ldots, r$, we have $a^{\left(p_{i}-1\right) / 2} \equiv 1\left(\bmod p_{i}\right)$, that is, $a^{(n-1) / 2} \equiv 1\left(\bmod p_{i}\right)$. By CRT, we then have $a^{(n-1) / 2} \equiv 1(\bmod n)$, that is, $a^{(n-1) / 2} \not \equiv\left(\frac{a}{n}\right)(\bmod n)$, that is, n is not an Euler pseudoprime to base a.

Case 2: Some $\frac{n-1}{p_{i}-1}$ is odd.
Without loss of generality, assume that $\frac{n-1}{p_{1}-1}$ is odd. Again take $a \in \mathbb{Z}_{n}^{*}$ with $\left(\frac{a}{p_{1}}\right)=-1$ and $\left(\frac{a}{p_{i}}\right)=+1$ for $i=2,3, \ldots, r$. By the definition of the Jacobi symbol, we then have $\left(\frac{a}{n}\right)=-1$. On the other hand, by Euler's criterion, we have $a^{(n-1) / 2} \equiv-1\left(\bmod p_{1}\right)$ and $a^{(n-1) / 2} \equiv 1\left(\bmod p_{i}\right)$ for $i=2,3, \ldots, r$. By CRT, we conclude that $a^{(n-1) / 2} \not \equiv \pm 1(\bmod n)$, that is, $a^{(n-1) / 2} \not \equiv\left(\frac{a}{n}\right)(\bmod n)$, that is, n is not an Euler pseudoprime to base a.
(c) n is an Euler pseudoprime to at most half the bases in \mathbb{Z}_{n}^{*}.

Solution Suppose that n is an Euler pseudoprime to the bases $a_{1}, a_{2}, \ldots, a_{t} \in \mathbb{Z}_{n}^{*}$ only. Let a be a base to which n is not an Euler pseudoprime. (Such a base exists by Part (b).) We have $a^{(n-1) / 2} \not \equiv\left(\frac{a}{n}\right)(\bmod n)$. On the other hand, $a_{i}^{(n-1) / 2} \equiv\left(\frac{a_{i}}{n}\right)(\bmod n)$ for $i=1,2, \ldots, t$. It follows that $\left(a a_{i}\right)^{(n-1) / 2} \equiv a^{(n-1) / 2} a_{i}^{(n-1) / 2} \not \equiv\left(\frac{a}{n}\right)\left(\frac{a_{i}}{n}\right) \equiv\left(\frac{a a_{i}}{n}\right)(\bmod n)$, that is, n is not an Euler pseudoprime to each of the bases $a a_{i}$, that is, there are at least t bases to which n is not an Euler pseudoprime.

2 The Lehmer sequence with parameters a, b is defined as

$$
\begin{aligned}
\bar{U}_{0} & =0 \\
\bar{U}_{1} & =1 \\
\bar{U}_{m} & =\bar{U}_{m-1}-b \bar{U}_{m-2} \quad \text { if } m \geqslant 2 \text { is even } \\
\bar{U}_{m} & =a \bar{U}_{m-1}-b \bar{U}_{m-2} \quad \text { if } m \geqslant 3 \text { is odd. }
\end{aligned}
$$

Let α, β be the roots of $x^{2}-\sqrt{a} x+b$.
(a) Prove that $\bar{U}_{m}= \begin{cases}\left(\alpha^{m}-\beta^{m}\right) /\left(\alpha^{2}-\beta^{2}\right) & \text { if } m \text { is even, } \\ \left(\alpha^{m}-\beta^{m}\right) /(\alpha-\beta) & \text { if } m \text { is odd. }\end{cases}$

Solution We proceed by induction on m. For $m=0$, we have $\bar{U}_{0}=\left(\alpha^{0}-\beta^{0}\right) /\left(\alpha^{2}-\beta^{2}\right)=0$, whereas for $m=1$, we have $\bar{U}_{1}=\left(\alpha^{1}-\beta^{1}\right) /(\alpha-\beta)=1$. Now suppose that $\bar{U}_{2 k}=\left(\alpha^{2 k}-\beta^{2 k}\right) /\left(\alpha^{2}-\beta^{2}\right)$ and $\bar{U}_{2 k+1}=\left(\alpha^{2 k+1}-\beta^{2 k+1}\right) /(\alpha-\beta)$ for some $k \geqslant 0$. Since α, β are roots of $x^{2}-\sqrt{a} x+b$, we have $\alpha+\beta=\sqrt{a}$ and $\alpha \beta=b$. But then

$$
\begin{aligned}
\bar{U}_{2 k+2} & =\bar{U}_{2 k+1}-b \bar{U}_{2 k} \\
& =\left(\frac{\alpha^{2 k+1}-\beta^{2 k+1}}{\alpha-\beta}\right)-b\left(\frac{\alpha^{2 k}-\beta^{2 k}}{\alpha^{2}-\beta^{2}}\right) \\
& =\frac{(\alpha+\beta)\left(\alpha^{2 k+1}-\beta^{2 k+1}\right)-b\left(\alpha^{2 k}-\beta^{2 k}\right)}{\alpha^{2}-\beta^{2}} \\
& =\frac{\left(\alpha^{2 k+2}-\beta^{2 k+2}\right)+\left(\alpha^{2 k}-\beta^{2 k}\right)(\alpha \beta-b)}{\alpha^{2}-\beta^{2}} \\
& =\frac{\alpha^{2 k+2}-\beta^{2 k+2}}{\alpha^{2}-\beta^{2}} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\bar{U}_{2 k+3} & =a \bar{U}_{2 k+2}-b \bar{U}_{2 k+1} \\
& =a\left(\frac{\alpha^{2 k+2}-\beta^{2 k+2}}{\alpha^{2}-\beta^{2}}\right)-b\left(\frac{\alpha^{2 k+1}-\beta^{2 k+1}}{\alpha-\beta}\right) \\
& =\frac{a\left(\alpha^{2 k+2}-\beta^{2 k+2}\right)-b(\alpha+\beta)\left(\alpha^{2 k+1}-\beta^{2 k+1}\right)}{\alpha^{2}-\beta^{2}} \\
& =\frac{(\alpha+\beta)^{2}\left(\alpha^{2 k+2}-\beta^{2 k+2}\right)-\alpha \beta(\alpha+\beta)\left(\alpha^{2 k+1}-\beta^{2 k+1}\right)}{\alpha^{2}-\beta^{2}} \\
& =\frac{(\alpha+\beta)\left(\alpha^{2 k+2}-\beta^{2 k+2}\right)-\alpha \beta\left(\alpha^{2 k+1}-\beta^{2 k+1}\right)}{\alpha-\beta} \\
& =\frac{\alpha^{2 k+3}-\beta^{2 k+3}}{\alpha-\beta} .
\end{aligned}
$$

(b) Let $\Delta=a-4 b$ and n a positive integer with $\operatorname{gcd}(n, 2 a \Delta)=1$. We call n is Lehmer pseudoprime with parameters a, b if $\bar{U}_{n-\left(\frac{a \Delta}{n}\right)} \equiv 0(\bmod n)$. Prove that n is a Lehmer pseudoprime with parameters a, b if and only if n is a Lucas pseudoprime with parameters $a, a b$.

Solution For the Lehmer sequence with parameters a, b, we take $\alpha=\frac{\sqrt{a}+\sqrt{a-4 b}}{2}$ and $\beta=\frac{\sqrt{a}-\sqrt{a-4 b}}{2}$. The discriminant is $\Delta=a-4 b$. On the other hand, for the Lucas sequence with parameters $a, a b$, the roots of the characteristic equation are $\alpha^{\prime}=\frac{a+\sqrt{a^{2}-4 a b}}{2}$ and $\beta^{\prime}=\frac{a-\sqrt{a^{2}-4 a b}}{2}$. Also the discriminant is $\Delta^{\prime}=a^{2}-4 a b$. That is, $\alpha^{\prime}=\sqrt{a} \alpha, \beta^{\prime}=\sqrt{a} \beta$ and $\Delta^{\prime}=a \Delta$. Finally, note that $n-\left(\frac{a \Delta}{n}\right)$ is even. Therefore,

$$
\begin{aligned}
\bar{U}_{n-\left(\frac{a \Delta}{n}\right)} & =\frac{\alpha^{n-\left(\frac{a \Delta}{n}\right)}-\beta^{n-\left(\frac{a \Delta}{n}\right)}}{\alpha^{2}-\beta^{2}} \\
& =\frac{\alpha^{n-\left(\frac{\Delta^{\prime}}{n}\right)}-\beta^{n-\left(\frac{\Delta^{\prime}}{n}\right)}}{(\alpha+\beta)(\alpha-\beta)} \\
& =\frac{(\sqrt{a})^{-\left[n-\left(\frac{\Delta^{\prime}}{n}\right)\right]}\left(\alpha^{\prime n-\left(\frac{\Delta^{\prime}}{n}\right)}-\beta^{\prime n-\left(\frac{\Delta^{\prime}}{n}\right)}\right)}{\sqrt{a}(\alpha-\beta)} \\
& =\frac{1}{(\sqrt{a})^{n-\left(\frac{\Delta^{\prime}}{n}\right)}}\left(\frac{\alpha^{\prime n-\left(\frac{\Delta^{\prime}}{n}\right)}-\beta^{\prime n-\left(\frac{\Delta^{\prime}}{n}\right)}}{\alpha^{\prime}-\beta^{\prime}}\right) \\
& =\frac{U_{n-\left(\frac{\Delta^{\prime}}{n}\right)}^{(\sqrt{a})^{n-\left(\frac{\Delta^{\prime}}{n}\right)}},}{}
\end{aligned}
$$

where U_{m}^{\prime} is the m-th term in the corresponding Lucas sequence. Since $\operatorname{gcd}(a, n)=1$, it follows that $\bar{U}_{n-\left(\frac{a \Delta}{n}\right)} \equiv 0(\bmod n)$ if and only if $U_{n-\left(\frac{\Delta^{\prime}}{n}\right)}^{\prime} \equiv 0(\bmod n)$.

3 Prove that for $m \geqslant 2$, the Fermat number $f_{m}=2^{2^{m}}+1$ is prime if and only if $5^{\left(f_{m}-1\right) / 2} \equiv-1\left(\bmod f_{m}\right)$.
Solution The condition $5^{\left(f_{m}-1\right) / 2} \equiv-1\left(\bmod f_{m}\right)$ implies that $\operatorname{ord}_{f_{m}}(5)=f_{m}-1$, that is, f_{m} is prime. Conversely, suppose that f_{m} is prime. By Euler's criterion, $5^{\left(f_{m}-1\right) / 2} \equiv\left(\frac{5}{f_{m}}\right)\left(\bmod f_{m}\right)$. But by the quadratic reciprocity law, $\left(\frac{5}{f_{m}}\right)=(-1)^{\left(f_{m}-1\right)(5-1) / 4}\left(\frac{f_{m}}{5}\right)=\left(\frac{f_{m}}{5}\right)=\left(\frac{2^{2^{m}}+1}{5}\right)=$ $\left(\frac{4^{2^{m-1}}+1}{5}\right)=\left(\frac{(-1)^{2^{m-1}}+1}{5}\right)=\left(\frac{1+1}{5}\right)=\left(\frac{2}{5}\right)=-1$.

4 (a) Suppose you are given a black-box that, given two positive integers n and k, returns in one unit of time the decision whether n has a factor d in the range $2 \leqslant d \leqslant k$. Using this black-box, devise an algorithm to factor a positive integer n in polynomial $($ in $\log n)$ time.

Solution We implement a binary search procedure for locating a non-trivial factor of n. The steps are listed below. We maintain two bounds L, U with $L \leqslant U$.

```
If the black-box returns 'no' for input n, n-1, return ' }n\mathrm{ is prime'.
Set }L=2\mathrm{ and }U=n-1
while (L<U) {
    Set M=(L+U)/2.
    If the black-box returns 'yes' for input n,M, set U = M,
    else set L}=M+1
}
return L.
```

(b) Deduce the running time of your algorithm.

Solution The while loop runs for $\mathrm{O}(\log n)$ times. Each iteration of the loop takes $\mathrm{O}(\log n)$ time. Thus the running time of our algorithm is $\mathrm{O}\left(\log ^{2} n\right)$.

5 Write a pseudocode implementing Floyd's variant of Pollard's rho method with block gcd calculations.
Solution Suppose that we use a block of t gcd's.

```
Initialize }x\mathrm{ and }y\mathrm{ to a random element of }\mp@subsup{\mathbb{Z}}{n}{}\mathrm{ .
Also initialize a running product }p=1\mathrm{ and a running count k=0.
Finally, initialize values of x,y before the current block: x'=x and y'=y.
while (1) {
    Update }x=f(x)\mathrm{ and }y=f(f(y))
    Update the product p\equivp\times(x-y)(mod n) and the count k=k+1.
    if k equals t {
        Compute the gcd d= gcd}(p,n)
        if d equals 1 {
            Prepare for the next block: p=1, k=0, x'=x and y'=y.
        } else {
                Go back to the start of the current block: x = 程 and y=\mp@subsup{y}{}{\prime}}\mathrm{ .
                while (1) {
                    Recalculate }x=f(x)\mathrm{ and }y=f(f(y))
                Compute individual gcd d = gcd}(n,x-y)
                if (d>1) return d.
            }
        }
    }
}
```

6 (a) Explain how sieving is carried out in connection with the multiple-polynomial quadratic sieve method, that is, for the general polynomial $T(c)=U+2 V c+W c^{2}$ with $V^{2}-U W=n$.

Solution We initialize an array A indexed in the range $-M \leqslant c \leqslant M$. The array location A_{c} is initialized to $\log |T(c)|$.
Let p be a small prime in the factor base. If $p=2$, we obtain the multiplicity m_{c} of 2 in $T(c)$ by bit operations. We subtract $m_{c} \log 2$ from A_{c}. (The array location A_{c} may be initialized after all factors of 2 are extracted from $T(c)$.)
Now let p be an odd prime and h a small exponent. We have $W T(c)=(W c+V)^{2}-n$, so the condition $p^{h} \mid T(c)$ is equivalent to $(W c+V)^{2} \equiv n\left(\bmod p^{h}\right)$. Since n is a quadratic residue modulo p, this congruence has exactly two solutions for c. For $h=1$, these solutions are obtained by a root finding algorithm in \mathbb{Z}_{p}, whereas for $h>1$, the solutions are obtained by Hensel lifting. Let c_{1}, c_{2} be the two solutions. For each c in the range $-M \leqslant c \leqslant M$ with $c \equiv c_{1}, c_{2}\left(\bmod p^{h}\right)$, we subtract $\log p$ from the array location A_{c}.

After all small primes p in the factor base are considered, we look at the values left in A_{c}. If $A_{c} \approx 0$ for some c, we factor $T(c)$ by trial division by factor base primes and obtain a relation.
(b) Assume that the factor base consists of $L[1 / 2]$ primes and the sieving interval is of size $L[1]$. Deduce that the sieving process can be completed in $L[1]$ time.

Solution Each value of $T(c)$ and its (approximate) logarithm can be computed in time polynomial in $\log n$. Thus the array A can be initialized in $L[1]$ time.
The multiplicity m_{c} of the prime $p=2$ in each $T(c)$ can be obtained in $\mathrm{O}(\log n)$ time and subsequently a suitable right shift operation removes the factors of 2 from each $T(c)$ again in $\mathrm{O}(\log n)$ time. Since there are $2 M+1=L[1]$ values of $T(c)$ to consider, this step takes $L[1]$ time.
For each small prime power p^{h}, one first obtains the two solutions c_{1}, c_{2}. This is doable in (probabilistic) polynomial time. Subsequently, one updates appropriate locations A_{c}. For a given p^{h}, the total time for subtraction of $\log p$ from all appropriate locations is $\approx(2 M+1) / p^{h}$. Summing over all values of p, h gives a total running time of $\mathrm{O}(\log n) M$ which is $L[1]$.
Finally, we scan over the entire array A in $2 M+1=L[1]$ time. We expect $L[1 / 2]$ relations. For each such relation, trial division by $L[1 / 2]$ primes in the factor base requires $L[1 / 2]$ time. Thus, the time for factoring all smooth values of $T(c)$ is $L[1 / 2] \times L[1 / 2]=L[1]$.

