CS60082 Computational Number Theory, Spring 2007

Mid-semester examination

Total marks: 75	February 21, 2007	Duration: 2 hours
-----------------	-------------------	--------------------------

[This test is open-notes. Answer all questions.]

1 Let $m_1, m_2 \in \mathbb{N}$ with $d = \text{gcd}(m_1, m_2)$, and let $a_1, a_2 \in \mathbb{Z}$. Consider the congruences

 $\begin{array}{rcl} x &\equiv& a_1 \ (\mathrm{mod} \ m_1), \\ x &\equiv& a_2 \ (\mathrm{mod} \ m_2). \end{array}$

(a) First assume that d = 1. There exist $u, v \in \mathbb{Z}$ such that $um_1 + vm_2 = 1$. Prove that a simultaneous solution of the congruences is given by (5)

 $x \equiv a_1 + (a_2 - a_1)um_1 \pmod{m_1 m_2}.$

	(b) Now consider the general case $d \ge 1$. Prove that the given congruences are simultaneously solvable if		
	and	only if $d \mid (a_2 - a_1)$.	(8+2)
	(c)	Prove that the solution of Part (b) is unique modulo $lcm(m_1, m_2)$.	(5)
	(d)	Describe an algorithm for computing this unique solution of the congruences.	(5)
2 Let p be a prime, $p \equiv 3 \pmod{4}$, and $a \in \mathbb{Z}$ with $\left(\frac{a}{p}\right) = 1$.			
	(a)	Prove that a square root of a modulo p can be computed as $a^{(p+1)/4} \pmod{p}$.	(5)
	(b)	How many solutions does the congruence $x^4 \equiv a \pmod{p}$ have? Justify your answer.	(10)

3 Represent $\mathbb{F}_{32} = \mathbb{F}_{2^5}$ as $\mathbb{F}_2(\theta)$, where $\theta^5 + \theta^2 + 1 = 0$.

(a) Consider the two elements α = θ⁴ + θ² + θ and β = θ³ + 1 of F₃₂ in this representation. Compute α + β, αβ and α/β.
(5)

(5)

- (c) Prove that $\theta + 1$ is a normal element of \mathbb{F}_{32} .
- 4 Let γ be a primitive element of the finite field \mathbb{F}_q , and $r \in \mathbb{N}$. Prove that the polynomial $x^r \gamma$ has a root in \mathbb{F}_q if and only if gcd(r, q 1) = 1. (5+5)