1 Let $m_1, m_2 \in \mathbb{N}$ with $d = \text{gcd}(m_1, m_2)$, and let $a_1, a_2 \in \mathbb{Z}$. Consider the congruences

 $\begin{array}{rcl} x &\equiv& a_1 \pmod{m_1}, \\ x &\equiv& a_2 \pmod{m_2}. \end{array}$

(a) First assume that d = 1. There exist $u, v \in \mathbb{Z}$ such that $um_1 + vm_2 = 1$. Prove that a simultaneous solution of the congruences is given by

$$x \equiv a_1 + (a_2 - a_1)um_1 \pmod{m_1 m_2}.$$

Solution Clearly $a_1 + (a_2 - a_1)um_1 \equiv a_1 \pmod{m_1}$. Moreover, $um_1 \equiv 1 \pmod{m_2}$, so that $a_1 + (a_2 - a_1)um_1 \equiv a_1 + (a_2 - a_1) \equiv a_2 \pmod{m_2}$.

(b) Now consider the general case $d \ge 1$. Prove that the given congruences are simultaneously solvable if and only if $d \mid (a_2 - a_1)$.

Solution [if] There exist $u, v \in \mathbb{Z}$ such that $um_1 + vm_2 = d$. Consider $x = a_1 + \left(\frac{a_2 - a_1}{d}\right) um_1$. Since $d \mid (a_2 - a_1)$ by hypothesis, $\left(\frac{a_2 - a_1}{d}\right)$ is an integer, so $x \equiv a_1 \pmod{m_1}$. Moreover, $um_1 = d - vm_2$, so that $a_1 + \left(\frac{a_2 - a_1}{d}\right) um_1 \equiv a_1 + (a_2 - a_1) - \left(\frac{a_2 - a_1}{d}\right) vm_2 \equiv a_2 \pmod{m_2}$. Thus $x = a_1 + \left(\frac{a_2 - a_1}{d}\right) um_1$ is a simultaneous solution of the given congruences.

[only if] Let x be a simultaneous solution of the congruences. Then for some $k_1, k_2 \in \mathbb{Z}$ we have $x = a_1 + k_1m_1 = a_2 + k_2m_2$, i.e., $a_2 - a_1 = k_1m_1 - k_2m_2$. Since $d \mid m_1$ and $d \mid m_2$, we have $d \mid (a_2 - a_1)$.

(c) Prove that the solution of Part (b) is unique modulo $lcm(m_1, m_2)$.

Solution Suppose that x, y are two solutions of the given congruences. But then $x \equiv y \pmod{m_1}$ and $x \equiv y \pmod{m_2}$, i.e., x - y is a common multiple of m_1 and m_2 . Therefore, $x \equiv y \pmod{m_1 m_2}$.

(d) Describe an algorithm for computing this unique solution of the congruences.

Solution By an extended gcd computation, obtain the values u, v, d satisfying $d = \text{gcd}(m_1, m_2) = um_1 + vm_2$. Then set $x \equiv a_1 + \left(\frac{a_2 - a_1}{d}\right) um_1 \pmod{\text{lcm}(m_1, m_2)}$ where $\text{lcm}(m_1, m_2) = m_1 m_2/d$.

- **2** Let p be a prime, $p \equiv 3 \pmod{4}$, and $a \in \mathbb{Z}$ with $\left(\frac{a}{p}\right) = 1$.
 - (a) Prove that a square root of a modulo p can be computed as $a^{(p+1)/4} \pmod{p}$.

Solution Let $b \equiv a^{(p+1)/4} \pmod{p}$. Then $b^2 \equiv a^{(p+1)/2} \equiv a^{(p-1)/2} \times a \pmod{p}$. By Euler's criterion $a^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \equiv 1 \pmod{p}$. Therefore, $b^2 \equiv a \pmod{p}$.

(b) How many solutions does the congruence $x^4 \equiv a \pmod{p}$ have? Justify your answer.

Solution Let $\pm b$ be the two solutions of $y^2 \equiv a \pmod{p}$. The solutions of $x^4 \equiv a \pmod{p}$ are the solutions of $z^2 \equiv \pm b \pmod{p}$. Since $p \equiv 3 \pmod{4}$, $\left(\frac{-1}{p}\right) = -1$. Thus if $\left(\frac{b}{p}\right) = 1$, then $\left(\frac{-b}{p}\right) = -1$, and if $\left(\frac{b}{p}\right) = -1$, then $\left(\frac{-b}{p}\right) = 1$. Therefore, exactly one of the congruences $z^2 \equiv b \pmod{p}$ and $z^2 \equiv -b \pmod{p}$ is solvable and has two solutions.

To sum up, there are exactly <u>two solutions</u> of $x^4 \equiv a \pmod{p}$.

3 Represent $\mathbb{F}_{32} = \mathbb{F}_{2^5}$ as $\mathbb{F}_2(\theta)$, where $\theta^5 + \theta^2 + 1 = 0$.

(a) Consider the two elements $\alpha = \theta^4 + \theta^2 + \theta$ and $\beta = \theta^3 + 1$ of \mathbb{F}_{32} in this representation. Compute $\alpha + \beta$, $\alpha\beta$ and α/β .

Solution $\alpha + \beta = \theta^4 + \theta^3 + \theta^2 + \theta + 1$.

(b) Find a primitive element of \mathbb{F}_{32} .

Solution The size of \mathbb{F}_{32}^* is 31, a prime. Thus every element of \mathbb{F}_{32}^* except the identity 1 is of order 31 and is a primitive element of F_{32} .

(c) Prove that $\theta + 1$ is a normal element of \mathbb{F}_{32} .

Solution We have

$$\begin{split} \gamma &= \theta + 1, \\ \gamma^2 &= \theta^2 + 1, \\ \gamma^4 &= \theta^4 + 1, \\ \gamma^8 &= \theta^8 + 1 = \theta^3(\theta^2 + 1) + 1 = \theta^5 + \theta^3 + 1 = \theta^3 + \theta^2, \\ \gamma^{16} &= \theta^6 + \theta^4 = \theta(\theta^2 + 1) + \theta^4 = \theta^4 + \theta^3 + \theta. \end{split}$$

Therefore, $(\gamma \quad \gamma^2 \quad \gamma^4 \quad \gamma^8 \quad \gamma^{16})^{t} = T (1 \quad \theta \quad \theta^2 \quad \theta^3 \quad \theta^4)^{t}$, where T is the 5 × 5 transformation matrix whose determinant is

$$\begin{vmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{vmatrix} \equiv \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{vmatrix}$$
(adding to the topmost row all of the remaining rows)
$$\equiv \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{vmatrix}$$
(expanding about the topmost row)
$$\equiv \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$
(expanding about the leftmost column)
$$\equiv \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = (xpanding about the topmost row)\\\equiv 1 \pmod{2}.$$

Therefore, γ is a normal element of \mathbb{F}_{32} .

4 Let γ be a primitive element of the finite field \mathbb{F}_q , and $r \in \mathbb{N}$. Prove that the polynomial $x^r - \gamma$ has a root in \mathbb{F}_q if and only if gcd(r, q - 1) = 1.

Solution [if] We have ur + v(q-1) = 1 for some $u, v \in \mathbb{Z}$, i.e., $(\gamma^u)^r = \gamma$, i.e., γ^u is a root of $x^r - \gamma$. [only if] Let $\delta \in \mathbb{F}_q$ be a root of $x^r - \gamma$, i.e., $\delta^r = \gamma$. Clearly, $\delta \in \mathbb{F}_q^*$. Let $e = \operatorname{ord} \delta$. But then $q-1 = \operatorname{ord} \gamma = e/\operatorname{gcd}(e, r)$. Moreover, $e \mid (q-1)$. So we must have e = q-1 and $\operatorname{gcd}(e, r) = 1$, i.e., $\operatorname{gcd}(r, q-1) = 1$.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India