1 Represent \(\mathbb{F}_{16} \) as \(\mathbb{F}_2(\theta) \), where \(\theta^4 + \theta + 1 = 0 \).

(a) Find a primitive element of \(\mathbb{F}_{16} \) in this representation.
(b) How many primitive elements does \(\mathbb{F}_{16} \) have?
(c) Determine the minimal polynomial of \(\theta + 1 \in \mathbb{F}_{16} \) as a polynomial in \(\mathbb{F}_2[x] \).

2 Let \(\mathbb{F}_q \) be a finite field, and let \(\gamma \in \mathbb{F}_q^* \) be a primitive element. For every \(\alpha \in \mathbb{F}_q^* \), there exists a unique \(x \) in the range \(0 \leq x < q - 2 \) such that \(\alpha = \gamma^x \). Denote this \(x \) by \(\text{ind}_\gamma \alpha \) (index of \(\alpha \) with respect to \(\gamma \)).

(a) First assume that \(q \) is odd. Prove that the equation \(x^2 = \alpha \) is solvable in \(\mathbb{F}_q \) for \(\alpha \in \mathbb{F}_q^* \) if and only if \(\text{ind}_\gamma \alpha \) is even.
(b) Next consider \(q = 2^n \). In this case, for every \(\alpha \in \mathbb{F}_q \), there exists a unique \(\beta \in \mathbb{F}_q \) such that \(\beta^2 = \alpha \). In fact, \(\beta = \alpha^{2^{n-1}} \). Suppose that \(\alpha, \beta \in \mathbb{F}_q^*, k = \text{ind}_\gamma \alpha \), and \(l = \text{ind}_\gamma \beta \). Express \(l \) as an efficiently computable formula in \(k \) and \(q \).

3 Prove that the polynomial \(x^4 + 2x + 7 \) is irreducible in \(\mathbb{Q}[x] \).

4 (a) Prove that the polynomials \(x^2 + 4 \) and \(x^3 + 4 \) are irreducible in \(\mathbb{F}_7[x] \).

(b) Compute the complete factorization of \(x^3 + 4x^2 + 2 \) in \(\mathbb{F}_7[x] \).

5 Determine which of the following curves is/are non-singular (i.e., elliptic curves).

(a) \(C_1 : y^2 + 4y = x^3 - 3x - 6 \) defined over \(\mathbb{Q} \).

(b) \(C_2 : y^2 + 4y = x^3 - 3x + 6 \) defined over \(\mathbb{F}_7 \).

6 Consider the elliptic curve \(E : y^2 = x^3 + 2x + 3 \) defined over \(\mathbb{F}_7 \), and the points \(P = (2, 1) \) and \(Q = (3, 6) \) on the curve.

(a) Compute the points \(P + Q, 2P, \) and \(3Q \) on the curve.
(b) Determine the order of \(P \) in the elliptic curve group \(E(\mathbb{F}_7) \).
(c) What is the number of points on \(E \) treated as an elliptic curve over \(\mathbb{F}_{49} = \mathbb{F}_{7^2} \)?

7 Let \(p \) be an odd prime with \(p \equiv 2 \pmod{3} \), and let \(a \) be an integer not divisible by \(p \). Prove that the elliptic curve \(y^2 = x^3 + a \) defined over \(\mathbb{F}_p \) contains exactly \(p + 1 \) points.