CS60082 Computational Number Theory, Spring 2007

End-semester examination

Total marks: 100 April 28, 2007 **Duration:** 3 hours

[This test is open-notes. Answer all questions.]

- **1** Represent \mathbb{F}_{16} as $\mathbb{F}_2(\theta)$, where $\theta^4 + \theta + 1 = 0$.
 - (a) Find a primitive element of \mathbb{F}_{16} in this representation. (5)
 - (b) How many primitive elements does \mathbb{F}_{16} have? (5)
 - (c) Determine the minimal polynomial of $\theta + 1 \in \mathbb{F}_{16}$ as a polynomial in $\mathbb{F}_2[x]$. (5)
- **2** Let \mathbb{F}_q be a finite field, and let $\gamma \in \mathbb{F}_q^*$ be a primitive element. For every $\alpha \in \mathbb{F}_q^*$, there exists a unique x in the range $0 \le x \le q-2$ such that $\alpha = \gamma^x$. Denote this x by $\operatorname{ind}_{\gamma} \alpha$ (index of α with respect to γ).
 - (a) First assume that q is odd. Prove that the equation $x^2 = \alpha$ is solvable in \mathbb{F}_q for $\alpha \in \mathbb{F}_q^*$ if and only if $\operatorname{ind}_{\gamma} \alpha$ is even. (2+3)
 - (b) Next consider $q=2^n$. In this case, for every $\alpha \in \mathbb{F}_q$, there exists a unique $\beta \in \mathbb{F}_q$ such that $\beta^2=\alpha$. In fact, $\beta=\alpha^{2^{n-1}}$. Suppose that $\alpha,\beta\in\mathbb{F}_q^*$, $k=\operatorname{ind}_\gamma\alpha$, and $l=\operatorname{ind}_\gamma\beta$. Express l as an efficiently computable formula in k and q.
- **3** Prove that the polynomial $x^4 + 2x + 7$ is irreducible in $\mathbb{Q}[x]$. (10)
- **4** (a) Prove that the polynomials $x^2 + 4$ and $x^3 + 4$ are irreducible in $\mathbb{F}_7[x]$. (5 × 2)
 - (b) Compute the complete factorization of $x^5 + 4x^3 + 4x^2 + 2$ in $\mathbb{F}_7[x]$. (5)
- 5 Determine which of the following curves is/are non-singular (i.e., elliptic curves). (5×2)
 - (a) $C_1: y^2 + 4y = x^3 3x 6$ defined over \mathbb{Q} .
 - **(b)** $C_2: y^2 + 4y = x^3 3x + 6$ defined over \mathbb{F}_7 .
- **6** Consider the elliptic curve $E: y^2 = x^3 + 2x + 3$ defined over \mathbb{F}_7 , and the points P = (2,1) and Q = (3,6) on the curve.
 - (a) Compute the points P + Q, 2P, and 3Q on the curve. (5 × 3)
 - (b) Determine the order of P in the elliptic curve group $E(\mathbb{F}_7)$.
 - (c) What is the number of points on E treated as an elliptic curve over $\mathbb{F}_{49} = \mathbb{F}_{7^2}$? (10)
- 7 Let p be an odd prime with $p \equiv 2 \pmod{3}$, and let a be an integer not divisible by p. Prove that the elliptic curve $y^2 = x^3 + a$ defined over \mathbb{F}_p contains exactly p + 1 points. (10)