CS60082 Computational Number Theory, Spring 2007

End-semester examination: Solutions

- **1** Represent \mathbb{F}_{16} as $\mathbb{F}_2(\theta)$, where $\theta^4 + \theta + 1 = 0$.
 - (a) Find a primitive element of \mathbb{F}_{16} in this representation.

Solution The order of the group \mathbb{F}_{16}^* is 15, i.e., every element $\alpha \in \mathbb{F}_{16}^*$ has order 1, 3, 5, or 15. We have $\theta \neq 1$, $\theta^3 \neq 1$, and $\theta^5 = \theta(\theta + 1) = \theta^2 + \theta \neq 1$. Thus, θ is a primitive element of \mathbb{F}_{16} .

(b) How many primitive elements does \mathbb{F}_{16} have?

Solution
$$\phi(15) = (3-1)(5-1) = 8$$
.

(c) Determine the minimal polynomial of $\theta + 1 \in \mathbb{F}_{16}$ as a polynomial in $\mathbb{F}_2[x]$.

Solution We have $\theta + 1 = \theta^4 = \theta^{2^2}$, i.e., $\theta + 1$ is a conjugate of θ , and therefore has the same minimal polynomial as θ , i.e., minpoly_{$\theta+1$} $(x) = x^4 + x + 1$.

- 2 Let \mathbb{F}_q be a finite field, and let $\gamma \in \mathbb{F}_q^*$ be a primitive element. For every $\alpha \in \mathbb{F}_q^*$, there exists a unique x in the range $0 \leqslant x \leqslant q-2$ such that $\alpha = \gamma^x$. Denote this x by $\operatorname{ind}_{\gamma} \alpha$ (index of α with respect to γ).
 - (a) First assume that q is odd. Prove that the equation $x^2 = \alpha$ is solvable in \mathbb{F}_q for $\alpha \in \mathbb{F}_q^*$ if and only if $\operatorname{ind}_{\gamma} \alpha$ is even.

Solution Let $\alpha = \gamma^{2k}$. Then $x^2 = \alpha$ has a solution $x = \gamma^k$. Conversely, suppose $x^2 = \alpha$ has a solution $\beta = \gamma^k$. Then $\alpha = \beta^2 = \gamma^{2k} = \gamma^{(2k) \operatorname{rem} (q-1)}$. Since q is odd, $(2k) \operatorname{rem} (q-1)$ is even.

(b) Next consider $q=2^n$. In this case, for every $\alpha\in\mathbb{F}_q$, there exists a unique $\beta\in\mathbb{F}_q$ such that $\beta^2=\alpha$. In fact, $\beta=\alpha^{2^{n-1}}$. Suppose that $\alpha,\beta\in\mathbb{F}_q^*$, $k=\operatorname{ind}_\gamma\alpha$, and $l=\operatorname{ind}_\gamma\beta$. Express l as an efficiently computable formula in k and q.

Solution If k is even, then l = k/2. If k is odd, then l = [k + (q-1)]/2. Another (less efficient) formula is $l \equiv kq/2 \pmod{q-1}$.

3 Prove that the polynomial $x^4 + 2x + 7$ is irreducible in $\mathbb{Q}[x]$.

Solution In order to prove the irreducibility of $f(x) = x^4 + 2x + 7$ over \mathbb{Q} , we look at $f(x+1) = (x^4 + 4x^3 + 6x^2 + 4x + 1) + 2(x+1) + 7 = x^4 + 4x^3 + 6x^2 + 6x + 10$. Now apply Eisenstein's criterion with respect to the prime p = 2.

4 (a) Prove that the polynomials $x^2 + 4$ and $x^3 + 4$ are irreducible in $\mathbb{F}_7[x]$.

Solution Let $f_1(x) = x^2 + 4$, and $f_2(x) = x^3 + 4$. We have $f_1(0) = 0$, $f_1(1) = 5$, $f_1(2) = 1$, $f_1(3) = 6$, $f_1(4) = 6$, $f_1(5) = 1$, and $f_1(6) = 5$. Also $f_2(0) = 4$, $f_2(1) = 5$, $f_2(2) = 5$, $f_2(3) = 3$, $f_2(4) = 5$, $f_2(5) = 3$, and $f_2(6) = 3$. Therefore, $f_1(x)$ and $f_2(x)$ have no roots in \mathbb{F}_7 , and so are irreducible.

(b) Compute the complete factorization of $x^5 + 4x^3 + 4x^2 + 2$ in $\mathbb{F}_7[x]$.

Solution We have $x^5 + 4x^3 + 4x^2 + 2 \equiv x^5 + 4x^3 + 4x^2 + 16 \equiv (x^2 + 4)(x^3 + 4) \pmod{7}$.

- 5 Determine which of the following curves is/are non-singular (i.e., elliptic curves).
 - (a) $C_1: y^2 + 4y = x^3 3x 6$ defined over \mathbb{Q} .

Solution Replace y+2 by y to rewrite the equation of the curve as $y^2=x^3-3x-6+4$, i.e., $y^2=x^3-3x-2$. The polynomial $x^3-3x-2=(x+1)^2(x-2)$ has multiple roots, and so C_1 is singular.

(b) $C_2: y^2 + 4y = x^3 - 3x + 6$ defined over \mathbb{F}_7 .

Solution Again replace y+2 by y to rewrite the equation of the curve as $y^2=x^3-3x+10$, i.e., $y^2=x^3+4x+3$. We have $x^3+4x+3=(x+4)(x^2+3x+6)$, where the quadratic factor is irreducible. Since x^3+4x+3 is square-free, it follows that C_2 is an elliptic curve.

- **6** Consider the elliptic curve $E: y^2 = x^3 + 2x + 3$ defined over \mathbb{F}_7 , and the points P = (2,1) and Q = (3,6) on the curve.
 - (a) Compute the points P + Q, 2P, and 3Q on the curve.

Solution
$$P + Q = (6,0), 2P = (3,6) = Q, \text{ and } 3Q = \mathcal{O}.$$

(b) Determine the order of P in the elliptic curve group $E(\mathbb{F}_7)$.

Solution We have $6P = 3Q = \mathcal{O}$, i.e., ord $P \mid 6$. Now $P \neq \mathcal{O}$, $2P = Q \neq \mathcal{O}$, and $3P = P + 2P = P + Q = (6,0) \neq \mathcal{O}$. Therefore, ord P = 6.

(c) What is the number of points on E treated as an elliptic curve over $\mathbb{F}_{49} = \mathbb{F}_{7^2}$?

Solution Easy calculations show that $E(\mathbb{F}_7) = \{\mathcal{O}, (2,1), (2,6), (3,1), (3,6), (6,0)\}$, i.e., $|E(\mathbb{F}_7)| = 6$, i.e., the trace of Frobenius for E at 7 is t = (7+1) - 6 = 2. We have $1 - 2x + 7x^2 = (1 - \alpha x)(1 - \beta x)$, where $\alpha = 1 + i\sqrt{6}$, and $\beta = 1 - i\sqrt{6}$. Thus $|E(\mathbb{F}_{7^2})| = 7^2 + 1 - (\alpha^2 + \beta^2) = 50 - 2(1 - 6) = 60$.

7 Let p be an odd prime with $p \equiv 2 \pmod{3}$, and let a be an integer not divisible by p. Prove that the elliptic curve $y^2 = x^3 + a$ defined over \mathbb{F}_p contains exactly p + 1 points.

Solution Since $p \equiv 2 \pmod 3$, we have $p-1 \equiv 1 \pmod 3$, i.e., $\gcd(p-1,3)=1$, i.e., the map $\mathbb{F}_p \to \mathbb{F}_p$ taking x to $x^3 \pmod p$ is a bijection, and so also is the map $\mathbb{F}_p \to \mathbb{F}_p$, $x \mapsto x^3 + a \pmod p$ for any integer a. We evaluate the right side of the equation $y^2 = x^3 + a$ at all the points of \mathbb{F}_p . Exactly (p-1)/2 of the values are quadratic residues, and exactly one value is 0. Thus the total number of finite points on E is $2 \times [(p-1)/2] + 1 = p$. Additionally considering the point at infinity gives the desired result.