1. Let $m = m_0 m_1 \dots m_{l-1}$ be the plaintext and $c = c_0 c_1 \dots c_{l-1}$ the corresponding ciphertext. We have l := |m| = |c| = 54. Since Y has code 24 and H has code 7 and $m_0 = H$, it follows that t = 24 - 7 = 17. So we can translate back the ciphertext to get the intermediate string $x = x_0 x_1 \dots x_{l-1}$ with $x_i = m_{si \text{ rem } 54}$:

 $x = H_GO_EBITELOEYLLMS_EOB_TV_IUECTNENAO_S_R_SDPRVCAMYEOY$

Now we have to apply the reverse permutation to get back m. It easily follows that $m_i = x_{s^{-1}i \text{ rem } 54}$, where $ss^{-1} \equiv 1 \pmod{54}$. The following table lists the decrypted message for all the possibilities of s with gcd(s, l) = 1.

s	s^{-1}	Recovered plaintext
1	1	H_GO_EBITELOEYLLMS_EOB_TVIUECTNENAO_S_R_SDPRVCAMYEOY
5	11	HO_EP_ETNRGYVAVOL_OC_LAEMISMBSU_YI_ERETEC_OEOTSYLBND
7	31	HTT_MCV_NERSA_GELM_ONOSEYI_AEDOEUEOYPBOEB_LR_YCISLVT
11	5	HELLO_CARRY_BOMB_TO_VEGIES_IN_SCOOTY_TUESDAY_ELEVEN_PM
13	25	H_YBVSSYSENECE_C_DL_LABTGIOTAEPLROOINOUYVMORM_E_TE_E
17	35	HAMENYAELR_ISTO_OSOELMCOVITDVERBGYNLYTECUEP_BOSE
19	37	H_OORTBD_EVEEMNLOASBVIPILCCYYEMYOEGES_TRUOATLENS
23	47	HCRE_EEEORSTVSLOYDOE_LT_A_NIOYBYV_NO_EP_CTMEGMSAUBLI
25	13	HYOOV_YE_AAIOEVE_TPOMES_LIRYE_SELTOMTBNCBENR_SCDGLU_
29	41	H_ULGDCS_RNEBCNBTMOTLES_EYRIL_SEMOPT_EVEOIAA_EY_VOOY
31	7	HILBUASMGEMTC_PE_ON_VYBYOIN_A_TL_EODYOLSVTSROEEE_ERC
35	17	HSNELTAOURT_SEGEOYMEYYCCLIPIV_BS_AOLNMEEVE_DBTROO_
37	19	HESOB_PEUCETYLNYGBREVDTIVOCMLEOSO_OTSI_RLEAYNEMA
41	29	HE_ET_E_MROMVYUONIOORLPEATOIGTBAL_LD_C_ECENESYSSVBY_
43	49	HMP_NEVELE_YADSEUT_YTOOCS_NI_SEIGEV_OT_BMOB_YRRAC_OLLE
47	23	HTVLSICY_RL_BEOBPYOEUEODEA_IYESONO_MLEG_ASREN_VCM_TT
49	43	HDNBLYSTOEO_CETERE_IY_USBMSIMEAL_CO_LOVAVYGRNTE_PE_O
53	53	HYOEYMACVRPDS_R_S_OANENTCEUIVT_BOE_SMLLYEOLETIBE_OG_

In practice one need not compute this complete table. Looking at the recovered letter m_1 we can throw away most of the possibilities, namely, all but s = 11, 37, 41. Finally, recovering m_2 for these three values lets us uniquely identify s as s = 11. The corresponding plaintext is:

 $m = \texttt{Hello_Carry_bomb_to_vegies_in_scooty_tuesday_eleven_pm}$

2. DES key schedule permutes the 56 bits of the key and performs cyclic shifts on its two halves. Both permuting and shifting commute with complementing and so the key schedule of \overline{K} gives the round keys $\overline{K_1}, \overline{K_2}, \ldots, \overline{K_{16}}$, where K_1, K_2, \ldots, K_{16} are the round keys for K. In an awful notation this translates to $\overline{K_i} = \overline{K_i}$ for $i = 1, \ldots, 16$.

Now look at the f function of DES. For inputs A and J of f we have $f(A, J) = P(S(E(A) \oplus J))$. Complementing both A and J yields $E(\overline{A}) \oplus \overline{J} = \overline{E(A)} \oplus \overline{J} = (1^{48} \oplus E(A)) \oplus (1^{48} \oplus J) = E(A) \oplus J$, i.e., $f(\overline{A}, \overline{J}) = f(A, J)$. Here 1^l denote the bit-string of length l consisting of all 1 bits.

Finally, investigate the DES encryption rounds. If I complement x, the values L_0 and R_0 get complemented (since any permutation and, in particular, IP commutes with complementation). Denoting the L_i and R_i values for \overline{x} by L'_i and R'_i (and those for x by simply L_i and R_i) we see that $L'_0 = \overline{L_0}$ and $R'_0 = \overline{R_0}$. If $L'_{i-1} = \overline{L_{i-1}}$ and $R'_{i-1} = \overline{R_{i-1}}$ for some $i = 1, \ldots, 16$, we have $L'_i = R'_{i-1} = \overline{R_{i-1}} = \overline{L_i}$. Also $R'_i = L'_{i-1} \oplus f(R'_{i-1}, \overline{K_i}) = \overline{L_{i-1}} \oplus f(\overline{R_{i-1}}, \overline{K_i}) = \overline{L_{i-1}} \oplus f(R_{i-1}, K_i) = 1^{32} \oplus L_{i-1} \oplus f(R_{i-1}, K_i) = 1^{32} \oplus R_i = \overline{R_i}$. Repeating this argument for $i = 1, \ldots, 16$ gives $L'_{16} = \overline{L_{16}}$ and $R'_{16} = \overline{R_{16}}$ and so $\mathrm{DES}_{\overline{K}}(\overline{x}) = \mathrm{IP}^{-1}(R'_{16} || L'_{16}) = \mathrm{IP}^{-1}(\overline{R_{16}} || \overline{L_{16}}) = \mathrm{IP}^{-1}(R_{16} || L_{16}) = \mathrm{DES}_K(x)$.

3. (a) Initializing any LFSR of length n to the state α gives an output bit-stream whose leftmost n bits are $a_0, a_1, \ldots, a_{n-1}$. Thus $L(\alpha) \leq n$.

[if] Let $\alpha = 00...01$. By Part (a) $L(\alpha) \leq n$. Suppose that $L(\alpha) < n$, i.e., some LFSR R of length l < n generates α as the first n bits. This requires R to have the initial state $a_0a_1...a_{l-1} = 00...0$, and so R will output only 0 bits, a contradiction to the fact that $a_{n-1} = 1$. Thus $L(\alpha) = n$.

[only if] Suppose that $\alpha \neq 00 \dots 01$. Also α is non-zero. So $a_j = 1$ for some $j \in \{0, 1, \dots, n-2\}$. Let R be an LFSR of length n-1, with control connections c_1, \dots, c_{n-1} and initialized to the state $a_0a_1 \dots a_{n-2}$. If $a_{n-1} = 0$, then taking $c_1 = c_2 = \dots = c_{n-1} = 0$ will allow R to output a bit-string with α as the leftmost part. If $a_{n-1} = 1$, then taking $c_i = \begin{cases} 1 & \text{if } i = n - j - 1 \\ 0 & \text{otherwise} \end{cases}$ will let R generate a bit-string with α as the leftmost part. Thus $L(\alpha) \leq n-1$.

- 4. I will prove the contrapositive, that is, if it is easy to find collisions for H', then it is also easy to find collisions for H. Let $(x_1, x_2) \in \{0, 1\}^{4m} \times \{0, 1\}^{4m}$ be a collision for H', i.e., $x_1 \neq x_2$, but $H'(x_1) = H'(x_2)$. Break up x_1 and x_2 as $x_1 = L_1 || R_1$ and $x_2 = L_2 || R_2$. If $L_1 \neq L_2$, but $H(L_1) = H(L_2)$, then (L_1, L_2) is a collision for H. Similarly, if $R_1 \neq R_2$, but $H(R_1) = H(R_2)$, then (R_1, R_2) is a collision for H. So assume that either $H(L_1) \neq H(L_2)$ or $H(R_1) \neq H(R_2)$. But then $y_1 := H(L_1) || H(R_1)$ and $y_2 := H(L_2) || H(R_2)$ are distinct, whereas $H(y_1) = H(y_2)$, i.e., (y_1, y_2) is a collision for H.
- 5. (a) $\binom{p}{k} = \frac{p(p-1)\cdots(p-k+1)}{1\cdot 2\cdots k}$ is an integer. The denominator in this expression for $\binom{p}{k}$ is not divisible by p for $k \in \{1, 2, \dots, p-1\}$, whereas the numerator is.

(b) Applying induction on *n* makes it sufficient to solve the exercise only for n = 1. By the binomial theorem $(a + b)^p = a^p + \left(\sum_{k=1}^{p-1} {p \choose k} a^{p-k} b^k\right) + b^p$. Now use Part (a).

(c) By Part (b) we have $f(X)^2 = a_0^2 + a_1^2 X^2 + a_2^2 X^4 + \dots + a_d^2 X^{2d}$. Since $a^2 = a$ for each $a \in \mathbb{Z}_2$, it follows that $f(X)^2 = a_0 + a_1 X^2 + a_2 X^4 + \dots + a_d X^{2d}$ in $\mathbb{Z}_2[X]$.

6. The set G of all bijective functions $\mathbb{Z} \to \mathbb{Z}$ is a group under functional composition. The identity in this group is the identity map $id_{\mathbb{Z}}$. Take:

$$g(n) := \begin{cases} n+1 & \text{if } n \text{ is odd,} \\ n-1 & \text{if } n \text{ is even,} \end{cases}$$
$$h(n) := \begin{cases} n+1 & \text{if } n \text{ is even,} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$$

It is clear that $g \circ g = id_{\mathbb{Z}} = h \circ h$, i.e., both g and h are of order 2. Denote $f := g \circ h$. We have:

$$f(n) = \begin{cases} n+2 & \text{if } n \text{ is even,} \\ n-2 & \text{if } n \text{ is odd.} \end{cases}$$

But then for any $k \in \mathbb{N}$ the k-fold composition f^k of f is given by:

$$f^k(n) = \begin{cases} n+2k & \text{if } n \text{ is even,} \\ n-2k & \text{if } n \text{ is odd.} \end{cases}$$

It follows that the functions f^1, f^2, f^3, \ldots are all distinct (and neither is the identity map). Therefore, f is of infinite order.

(Note that you can perhaps locate such beasts among matrices, i.e., in the special linear group (over \mathbb{Q} , \mathbb{R} or \mathbb{C}). I require a *proof* that your product matrix is of infinite order.)