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. In a cryptographic sense we call an algorithm infeasible, if it takes a time of 2%° or more floating point
operations. Assume that some algorithm A takes a time of f(t) floating point operations for an input of
bit-size ¢. For each of the following cases find the least positive integer ¢ for which A is infeasible. (Show

your calculations.) (3x5)
(@ f(t) =15
(b) f(t) =22
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. In this exercise one studies the arithmetic in the finite field 195 = Fxs.
(a) Show that f(X) := X3+ 2X + 4 € F5[X] is irreducible. 5

(b) Let us represent F1a5 as F5[X|/(f(X)). Call @ := X + (f(X)) € Fi25 and consider the elements
a:=30%+2a+1land b := 2a2 + 3 in Fjos. Compute ab™! in this representation of [F195. You should
compute the canonical representative of ab~! in F195, i.e., a polynomial in o of degree < 3. (10)

. Let p be a prime and g a generator of . Suppose that Alice’s private and public keys are respectively d and
g®. Recall that an EIGamal signature (s, t) of Alice on a message M is computed for a random d’ as:

s = g7 (mod p),
t = (d)'H(M)—-dH(s)] (modp — 1).

(a) Consider a variant of the EIGamal scheme, in which s is computed as above, but the roles of d and d’
are interchanged in the second equation, i.e., the modified signature (s,?) on M is generated as:

s = g% (mod p),
t = d Y H(M)—dH(s) (modp—1).
Write the verification routine for the modified scheme. 5

(b) Show that forging modified ElGamal signatures is as difficult as computing discrete logarithms in F.
You may assume that a forger can arrange d’ of her choice. 5

(¢) Explain why signature generation is (a bit) more efficient in the modified scheme. Suppose that
because of this enhanced performance Alice decided to switch to the modified scheme, but for backward
compatibility she maintained both the original signature (s, t) and the modified signature (s, ¢ ) on a message
M. What went wrong? 2+3)

. Let n := pq with distinct primes p and g each congruent to 3 modulo 4.
(a) Show that —1 is a quadratic non-residue modulo p and modulo q. 5)

(b) If a € Z} is a quadratic residue modulo n, prove that a has exactly four square roots modulo n, of
which exactly one is a quadratic residue modulo 7. S

(¢) Consider the following identification protocol in which Alice wants to prove to Bob her knowledge of
the factorization of n = pq.



e Bob sends a to Alice.

e Alice computes four square roots of a modulo n and picks up the unique square root b which is
a quadratic residue modulo n.

e Alice sends b to Bob.

e Bob accepts Alice’s claim, if and only if b = 2% (mod n).

Assume that p and ¢ are sufficiently large so that computing square roots modulo n is infeasible without the
knowledge of the factorization of n. Argue that Alice can prove her identity to Bob, if and only if she knows
the factorization of n. )]

(d) Conclude that this is not a good zero-knowledge protocol, by demonstrating that Bob can maliciously
send a bad a to Alice so that during the execution of the protocol he gathers enough information to factor n. (5)

. Let G be a finite multiplicative Abelian group with identity e. Recall that for a € G the order ordg(a) is
defined to be the smallest of the positive integers h such that a” = e. Let m := ordg(a) for some a € G
and let k£ € N. Prove the following assertions:

(@) a" = e, if and only if m | h. 5)
(b) ordg(a*) = m/ged(m, k). (5)

. Let n := pqg with two distinct odd primes p and ¢, ged(e,¢(n)) = 1 and ed = 1 (mod ¢(n)), i.e.,
(n, e) is an RSA public-key and d the corresponding private key. In this exercise one derives that factoring
n is (probabilistic) polynomial-time equivalent to the problem of computing d from (n,e) (without the
knowledge of p or g or ¢(n)). If the factorization of n is provided, one can compute d from (n,e) as
in the RSA key generation procedure. In the following parts you are asked to prove the converse. Write
ed — 1 = 25t with ¢ odd. Since ed — 1 is a multiple of ¢(n) = (p — 1)(¢ — 1), we have s > 2.

(a) Show that for any a € Z one has ord, (a’) | 2%, where ord, (z) denotes the (multiplicative) order of

e, 5)

(b) We know that the group Zj, is cyclic. Let g be a generator of Z,. Take a := g* (mod p) for some
k € {0,1,...,p — 2} and let ord,(a’) = 29. Show that ¢ = va(p — 1) if k is odd, and o0 < va(p — 1)
if k is even. Here vo(p — 1) stands for the multiplicity of 2 in p — 1, i.e., the largest exponent e such that
2¢| (p — 1). An analogous result holds for the other prime gq. 5)

(¢) If ord,(a') # ord,(a') for some a € Z, prove that there exists o € {0,1,2,...,s — 1} such that
ged(a?”t — 1,n) is a non-trivial factor (p or q) of n. 5

(d) Demonstrate that there are at least ¢(n)/2 elements a in Z with the property that a’ has different orders
modulo p and q. 5)

(e) Design a probabilistic polynomial-time algorithm for factoring n from the knowledge of n, e and d. 5
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