End Semester Examination, Autumn 2003-04

Solutions

1. (a) 10322, (b) 160, (c) 153, (d) 496, (e) 590.

2. (a) f(X),if reducible in F5[X], admits a linear factor in F5[X], i.e., a root in F5. But f(0) = 4 (mod 5),
f(1)=7=2(mod5), f(2) =16 =1 (mod 5), f(3) =37=2 (mod 5) and f(4) =76 = 1 (mod 5).

(b) In order to compute b~!, I should compute the extended ged of f(X) with b(X) = 2X?2 + 3 in F5[X].
The following table lists the relevant computations:

U Ty =TrioTemTi1 ¢ = Ti—2quot i1 v = V2 — Vi1
0 X3 4+2X +4 — 0

1 2X2+3 — 1

2 3X +4 3X 2X

3 1 4X +3 2X2 +4X +1

Therefore, b~! = 202 +4a+1andso ab™! = (3a® +2a+1)(2a? +4a+1) = a* +a® + 32 +a+1 =
(a* +2a% +4a) + (a3 +2a +4) + (a®> +2) = a® + 2.
3. (a) The signing equation for the modified ElGamal scheme is H(M) = dt + d'H(s) (mod p — 1).

7
Exponentiation gives the congruence g'! (M) = (gd) sH(s) (mod p) to be checked for verification.

(b) If d is known, one can generate the signature (s, ¢ ) on M in polynomial time. Conversely, suppose that
an intruder chooses d’ of her choice and somehow obtains the valid signature (s,¢) on M. If ¢ is invertible
modulo p — 1, she can compute d = ()~ '[H(M) — d'H(s)] (mod p — 1) in polynomial time.

(¢) Precomputation of d~! (mod p— 1) saves the time for computing a modular inverse during each signing
operation. However, if s, ¢, f are known, one has:

H(M) dH(s) +d't (mod p — 1),
H(M) = dt+dH(s) (modp—1).

This is a system of two linear congruences, and if H(s)? — tf is invertible modulo p — 1, one can solve this
system to obtain the unknown values d and d’.

4. (a) By Euler’s criterion (_71) = (=1)P=1/2 = _1,since (p — 1)/2 = 1 (mod 2). Similarly for g.

(b) a has exactly two square roots modulo p, say +u (mod p), and exactly two square roots +v modulo g.
Combining using CRT gives exactly four square roots (b, b2, b3, bs) of @ modulo n.

By Part (a) exactly one of u and —wu is a quadratic residue modulo p, and exactly one of v and —v is
a quadratic residue modulo ¢g. Finally, note that b is a quadratic residue modulo n, if and only if b is a
quadratic residue modulo both p and q.

(c) If Alice knows p and g, she can compute (in poly-time) the four square roots by, b, b3, by of a modulo
n. Since b is a quadratic residue (z?) modulo n, it is the unique square root of @ which is a quadratic residue
modulo n. Thus Alice succeeds in proving her identity.

On the other hand, suppose that an intruder can produce b for any given biquadratic residue (fourth power)

a. By Parts (a) and (b) quadratic residues modulo n are biquadratic residues too; so the intruder can compute
square roots of @ modulo n for any a € Z},. By our assumption this is infeasible.

(d) Bob randomly locates b’ € Z? with (%/) = —1. This means that either (%) =—lor (%) = —1, but
not both. Bob sends a := (b')? (mod n). Since quadratic residues modulo n are also biquadratic residues,
a = x* (mod n) for some x € Z¥. Alice returns b = 22 (mod n). But then (%) = (2) =1,ie,
b is congruent to b’ modulo exactly one of p and ¢ and not congruent to b’ modulo the other prime. Thus

ged(b — b/, n) is a non-trivial factor of n.



h =mq + 7 for0 < r < m. Then a” = (am)\qarl = a" # e by the definition of m.

(b) Let [ := ordg(a®). Since k/ ged(m, k) is an integer, we have (a*)™/ged(mk) — (gm)k/ged(mk) — ¢
and so by Part (a) I | m/ ged(m, k). Conversely, a* = (a*)! = e, ie., m | ki, i.e., m/ ged(m, k) divides
(k/ ged(m, k))L. Since ged(m/ ged(m, k), k/ ged(m, k)) = 1, we have m/ ged(m, k) | [.

. (a) ord,(a) divides ¢(n) and hence ed — 1 = 2°¢ too, i.e., ord, (a) = 2°'t' for 0 < s’ < sand ¢’ | t. By
Exercise 5(a) ord, (a*) = 25't'/ ged(2°'t/, t) = 2t/ Jt' = 2%,

(b) Let v := va(p — 1), ie., p — 1 = 2Yr for some odd r. By definition ord,(g) = 2"r, and so
ord,(g*) = 2vr /8, where 6 := ged(2Vr, k). If k is odd, § is odd and divides 7, i.e., ord,(g*) = 2%(r/d).
On the other hand, if & is even, § is even too, and we can write § = 29"y for some v’ > 0 and for some odd

o 2v if k£ is odd
 dividing r, so that ord,(¢¥) = 2°~V (r/r’). It then follows that ord t:{ : ’
r’ dividing r, so that ord,(g") (r/r") en follows that ord,(a") 9= 3 b is even.
(¢) Letord,(a’) = 27 and ord,(a') = 27 with o # 7. We only consider o < 7 — the other case can be
handled similarly. Consider the element b := a?’* = (a’)?” (mod n). By the choices of o and T we have
b=1 (modp)and b # 1 (mod q),ie.,p|(b—1)and qf(b— 1), sothat gcd(b— 1,n) = p.

(d) Let v := va(p — 1) and w := va(qg — 1). Let g be a primitive element modulo p and A a primitive
element modulo ¢g. Consider the sets

So = {¢" (modp)|k=0,2,4,...,p— 3},
S, = {¢* (modp)|k=1,3,5...,p—2},
To = {h* (modq)|k=0,2,4,....,q—3},
T, = {h¥ (modq)|k=1,3,5,...,q—2}.

We have #Sy = #51 = (p— 1)/2 and #1y = #7171 = (¢ — 1)/2. Also recall that ¢(n) = (p — 1)(¢ — 1).
Casel: v=w

Take x € Sp and y € T;. By the CRT we have a (unique) a € Z} with a = = (mod p) and a = y (mod q).
By Part (b) we have va(ord,(a’)) < va(ord,(a')), i.e., in particular, ord,(a’) # ord,(a’). This accounts
for [(p — 1)/2][(¢ — 1)/2] = ¢(n)/4 elements a € Z, with ord,(a’) # ord,(a'). Choosing z € Sy and
y € Ty similarly gives us a (disjoint) set of ¢(n)/2 such elements.

Case2: v<w

Take x € So U S1 and y € T3 and follow an argument as in Case 1.
Case3: v>w

Take x € Sy and y € Ty U Th.

(e) One repeats the following procedure for random a € {1,2,...,n — 1}, until one succeeds to factor 7.
If ged(a,n) > 1, this ged is a non-trivial factor of n. So assume a € ZZ. Compute ged(a?’? — 1,n) for
o =0,1,...,s — 1. With probability 1/2 we have ord,(a’) # ord,(a'), and if so, some o will give us a
non-trivial factor of n by Part (c).
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