
CS 60041 Cryptography and network security
End Semester Examination, Autumn 2003-04

Solutions

1. (a) 10322, (b) 160, (c) 153, (d) 496, (e) 590.

2. (a) f(X), if reducible in F5[X], admits a linear factor in F5[X], i.e., a root in F5. But f(0) ≡ 4 (mod 5),
f(1) ≡ 7 ≡ 2 (mod 5), f(2) ≡ 16 ≡ 1 (mod 5), f(3) ≡ 37 ≡ 2 (mod 5) and f(4) ≡ 76 ≡ 1 (mod 5).

(b) In order to compute b−1, I should compute the extended gcd of f(X) with b(X) = 2X2 + 3 in F5[X].
The following table lists the relevant computations:

i ri = ri−2 rem ri−1 qi = ri−2 quot ri−1 vi = vi−2 − qivi−1

0 X3 + 2X + 4 − 0
1 2X2 + 3 − 1
2 3X + 4 3X 2X
3 1 4X + 3 2X2 + 4X + 1

Therefore, b−1 = 2α2 + 4α+ 1 and so ab−1 = (3α2 + 2α+ 1)(2α2 + 4α+ 1) = α4 +α3 + 3α2 +α+ 1 =
(α4 + 2α2 + 4α) + (α3 + 2α+ 4) + (α2 + 2) = α2 + 2.

3. (a) The signing equation for the modified ElGamal scheme is H(M) ≡ dt̄ + d′H(s) (mod p − 1).

Exponentiation gives the congruence gH(M) ≡
(
gd
)t̄
sH(s) (mod p) to be checked for verification.

(b) If d is known, one can generate the signature (s, t̄ ) on M in polynomial time. Conversely, suppose that
an intruder chooses d′ of her choice and somehow obtains the valid signature (s, t̄ ) on M . If t̄ is invertible
modulo p− 1, she can compute d ≡ ( t̄ )−1[H(M)− d′H(s)] (mod p− 1) in polynomial time.

(c) Precomputation of d−1 (mod p−1) saves the time for computing a modular inverse during each signing
operation. However, if s, t, t̄ are known, one has:

H(M) ≡ dH(s) + d′t (mod p− 1),

H(M) ≡ dt̄+ d′H(s) (mod p− 1).

This is a system of two linear congruences, and if H(s)2 − tt̄ is invertible modulo p− 1, one can solve this
system to obtain the unknown values d and d′.

4. (a) By Euler’s criterion
(
−1
p

)
= (−1)(p−1)/2 = −1, since (p− 1)/2 ≡ 1 (mod 2). Similarly for q.

(b) a has exactly two square roots modulo p, say ±u (mod p), and exactly two square roots ±v modulo q.
Combining using CRT gives exactly four square roots (b1, b2, b3, b4) of a modulo n.
By Part (a) exactly one of u and −u is a quadratic residue modulo p, and exactly one of v and −v is
a quadratic residue modulo q. Finally, note that b is a quadratic residue modulo n, if and only if b is a
quadratic residue modulo both p and q.

(c) If Alice knows p and q, she can compute (in poly-time) the four square roots b1, b2, b3, b4 of a modulo
n. Since b is a quadratic residue (x2) modulo n, it is the unique square root of a which is a quadratic residue
modulo n. Thus Alice succeeds in proving her identity.
On the other hand, suppose that an intruder can produce b for any given biquadratic residue (fourth power)
a. By Parts (a) and (b) quadratic residues modulo n are biquadratic residues too; so the intruder can compute
square roots of a modulo n for any a ∈ Z∗n. By our assumption this is infeasible.

(d) Bob randomly locates b′ ∈ Z∗n with
(
b′
n

)
= −1. This means that either

(
b′
p

)
= −1 or

(
b′
q

)
= −1, but

not both. Bob sends a := (b′)2 (mod n). Since quadratic residues modulo n are also biquadratic residues,
a ≡ x4 (mod n) for some x ∈ Z∗n. Alice returns b ≡ x2 (mod n). But then

(
b
p

)
=
(
b
q

)
= 1, i.e.,

b is congruent to b′ modulo exactly one of p and q and not congruent to b′ modulo the other prime. Thus
gcd(b− b′, n) is a non-trivial factor of n.



5. (a) If m | h, write h = mq. Then ah = (am)q = eq = e. For proving the converse, let m 6 | h, i.e.,
h = mq + r for 0 < r < m. Then ah = (am)qar = ar 6= e by the definition of m.

(b) Let l := ordG(ak). Since k/ gcd(m, k) is an integer, we have (ak)m/ gcd(m,k) = (am)k/ gcd(m,k) = e,
and so by Part (a) l | m/ gcd(m, k). Conversely, akl = (ak)l = e, i.e., m | kl, i.e., m/ gcd(m, k) divides
(k/ gcd(m, k))l. Since gcd(m/ gcd(m, k), k/ gcd(m, k)) = 1, we have m/ gcd(m, k) | l.

6. (a) ordn(a) divides φ(n) and hence ed − 1 = 2st too, i.e., ordn(a) = 2s
′
t′ for 0 6 s′ 6 s and t′ | t. By

Exercise 5(a) ordn(at) = 2s
′
t′/ gcd(2s

′
t′, t) = 2s

′
t′/t′ = 2s

′
.

(b) Let v := v2(p − 1), i.e., p − 1 = 2vr for some odd r. By definition ordp(g) = 2vr, and so
ordp(g

k) = 2vr/δ, where δ := gcd(2vr, k). If k is odd, δ is odd and divides r, i.e., ordp(g
k) = 2v(r/δ).

On the other hand, if k is even, δ is even too, and we can write δ = 2v
′
r′ for some v′ > 0 and for some odd

r′ dividing r, so that ordp(g
k) = 2v−v

′
(r/r′). It then follows that ordp(a

t) =

{
2v if k is odd,
2v−v

′
if k is even.

(c) Let ordp(a
t) = 2σ and ordq(a

t) = 2τ with σ 6= τ . We only consider σ < τ — the other case can be
handled similarly. Consider the element b := a2σt = (at)2σ (mod n). By the choices of σ and τ we have
b ≡ 1 (mod p) and b 6≡ 1 (mod q), i.e., p | (b− 1) and q6 |(b− 1), so that gcd(b− 1, n) = p.

(d) Let v := v2(p − 1) and w := v2(q − 1). Let g be a primitive element modulo p and h a primitive
element modulo q. Consider the sets

S0 := {gk (mod p) | k = 0, 2, 4, . . . , p− 3},
S1 := {gk (mod p) | k = 1, 3, 5, . . . , p− 2},
T0 := {hk (mod q) | k = 0, 2, 4, . . . , q − 3},
T1 := {hk (mod q) | k = 1, 3, 5, . . . , q − 2}.

We have #S0 = #S1 = (p− 1)/2 and #T0 = #T1 = (q − 1)/2. Also recall that φ(n) = (p− 1)(q − 1).
Case 1: v = w

Take x ∈ S0 and y ∈ T1. By the CRT we have a (unique) a ∈ Z∗n with a ≡ x (mod p) and a ≡ y (mod q).
By Part (b) we have v2(ordp(a

t)) < v2(ordq(a
t)), i.e., in particular, ordp(a

t) 6= ordq(a
t). This accounts

for [(p − 1)/2][(q − 1)/2] = φ(n)/4 elements a ∈ Z∗n with ordp(a
t) 6= ordq(a

t). Choosing x ∈ S1 and
y ∈ T0 similarly gives us a (disjoint) set of φ(n)/2 such elements.
Case 2: v < w

Take x ∈ S0 ∪ S1 and y ∈ T1 and follow an argument as in Case 1.
Case 3: v > w

Take x ∈ S1 and y ∈ T0 ∪ T1.

(e) One repeats the following procedure for random a ∈ {1, 2, . . . , n− 1}, until one succeeds to factor n.
If gcd(a, n) > 1, this gcd is a non-trivial factor of n. So assume a ∈ Z∗n. Compute gcd(a2σt − 1, n) for
σ = 0, 1, . . . , s − 1. With probability 1/2 we have ordp(a

t) 6= ordq(a
t), and if so, some σ will give us a

non-trivial factor of n by Part (c).
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