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Chapter 6 : Parallel computation : Solutions of the exercises

1. x ⊕ y = (x ∨ y) ∧ (x ∧ y) . In order to show that three gates do not suffice, let Sk denote the set of all functions on
input x, y, that can be realized using exactly k basic gates. For small values of k we can exhaustively enumerate all
elements of Sk. In particular, one can easily check that:

S0 = {x, y},
S1 = {x, y, x, y, x ∨ y, x ∧ y},
S2 = {0, 1, x, y, x, y, x ∨ y, x ∨ y, x ∨ y, x ∨ y, x ∧ y, x ∧ y, x ∧ y, x ∧ y}.

Suppose that x⊕ y can be obtained using three basic gates. Call the output gate G. If G is a NOT gate, then G is fed
an input which realizes x⊕ y using two gates only. But the list S2 does not include this function (XNOR). So assume
now that G is an OR gate. Looking at the truth table of x ⊕ y and of the functions in S1 ∪ S2 indicates that the two
inputs to G must in this case be x∧ y and x∧ y. But we know that these functions are not in S1 and it is impossible to
realize both using two gates only. Finally, if G is an AND gate, its two inputs must be x∨ y and x ∧ y = x∨ y. Again
it is impossible to realize both the functions using two gates only. Thus all possibilities for G lead to contradictions.

A similar argument shows that x⊕ y cannot be realized using three basic gates. Moreover, x⊕ y = (x∧ y)∨ (x ∨ y)
is realizable using only four gates. It follows that:

S3 = {0, 1, x, y, x, y, x ∨ y, x ∨ y, x ∨ y, x ∨ y, x ∧ y, x ∧ y, x ∧ y, x ∧ y},
S4 = {0, 1, x, y, x, y, x ∨ y, x ∨ y, x ∨ y, x ∨ y, x ∧ y, x ∧ y, x ∧ y, x ∧ y, x⊕ y, x⊕ y}.

2. It suffices to show that NCj+1 = NCj implies NCj+2 ⊆ NCj+1. Take L ∈ NCj+2 and let (C0, C1, C2, . . .) be a
uniform family of circuits realizing L. Then Cn has size 6 p(n) and depth O(logj+2 n) for each n, where p(n) is a
fixed polynomial in n. We order the gates in Cn as g1, g2, . . . , gp(n) such that each gk takes input from (some of) the
previous gates. Now break the list into O(logn) levels each containing exactly logj+1 n gates. We view each level as a
circuit that receives its input from the previous levels. Consider the i-th gate g at the k-th level. The output of g defines
a Boolean function on at most p(n) input variables (outputs of gates from the previous levels). Pad the inputs of the
circuit for g, so that it has exactly p(n) input variables. Call this circuit C (i)

p(n). This has size polynomial in n (and

hence in p(n)) and depth 6 logj+1 n = O(logj+1 p(n)). But then
(
C

(i)
p(n)

)
is a uniform family of circuits deciding

a language L(i) ∈ NCj+1. Since NCj+1 = NCj , L(i) is realized also by a circuit family
(
D

(i)
p(n)

)
, where D(i)

p(n) has

size polynomial in p(n) (and hence n) and depth O(logj p(n)), i.e., O(logj n). So we can replace the circuits C(i)
p(n)

in the current (k-th) level by the respective circuits D(i)
p(n) working in parallel.

Doing this for every level (i.e., for every value of k) converts Cn to a circuit of polynomial size and of depth
O(logj+1 n). We conclude that L ∈ NCj+1.

3. Let 〈C,α〉 be an input for CIRCUIT-VALUE with |α| = n. We want to convert it to an instance 〈C ′, α′〉 such that
C ′ is monotone and C ′(α′) = 1 if and only if C(α) = 1. We take α′ = αα01, where α is the bit-wise complement
of α. We order the gates of C as g1, g2, . . . , gk such that each gi takes input(s) from the outputs of previous gates and
from the input variables. Let zi be the output of gate gi. C ′ consists of gates that compute both zi and zi. By induction
on i I show that this is achievable without using NOT gates. The induction basis is provided by the availability of all
the input variables in non-complemented and complemented forms.

Take some i > 1 and let x (and y) be the input(s) to the gate gi. By induction x, x, y, y are available in the part of the
circuit C ′ generated so far. If gi is an OR gate, then zi = x ∨ y and zi = x ∧ y. If gi is an AND gate, then zi = x ∧ y
and zi = x∨ y. Finally, if gi is a NOT gate, we have zi = x∧ 1 and zi = x∨ 0. (Recall that 0 and 1 are available from
the last two bits of the input α′.) In all the cases AND and OR gates compute both zi and zi from the available values.

Thus C ′ has twice as many gates as C has. Also |α′| = 2|α|+2. Moreover, a log-space transducer can be employed to
do the conversion of 〈C,α〉 to 〈C ′, α′〉. It follows that CIRCUIT-VALUE 6L MONOTONE-CIRCUIT-VALUE.
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4. (a) For proving the inclusion ACj ⊆ NCj+1 we use the fact that a k-input AND or OR gate can be replaced by
a height-balanced binary tree comprising only two-input gates. The depth of this tree is O(log k). The inclusion
NCj+1 ⊆ ACj+1 is obvious.

(b) NC =
⋃
j∈NNCj ⊆ ⋃j∈NACj = AC. Conversely, AC =

⋃
j∈N0

ACj ⊆ ⋃j∈N0
NCj+1 =

⋃
j∈NNCj = NC.

(c) Use a construction as in Exercise 2.

5. Let ci denote the input carry at the i-th position. (Initially, c0 = 0.) Note that ci = 1 if and only if it is generated
at some position j 6 i and propagated through positions j + 1, . . . , i − 1. The condition for generation of the
carry (cj+1 = 1) is that xj = yj = 1, whereas the condition for carry propagation is xk = 1 or yk = 1 for all
k = j + 1, . . . , i− 1, i.e.,

ci =
i−1∨

j=0


(xj ∧ yj) ∧




i−1∧

k=j+1

(xk ∨ yk)






Thus a depth 3 AC0 circuit can compute all the carry bits c0, c1, . . . , cn in parallel. The output bits are then obtained
in parallel using bit adder circuits (which are of constant depth): zi = xi ⊕ yi ⊕ ci and zn = cn.
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