
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 5 : Randomized computation : Solutions of the exercises

1. Clearly, PP ⊆ PP′. For proving the converse inclusion take any L ∈ PP′ and let N ′ be a PP′ machine for L. Further
let N ′ run in time 6 f(n) for all n. I now design a PP machine N for L. N first makes f(n) + 1 coin tosses. If all
tosses give ‘tail’, N rejects and halts, else it simulates N ′ on the input α.

If α ∈ L, then the probability that N accepts α is Pr[N ′ accepts α] ×
(
1− 2−(f(n)+1)

)
. But N ′ works in 6 f(n)

steps, i.e., each branch of computation of N ′ has a probability of 2−k for some k 6 f(n). In particular, for α ∈ L we
have Pr[N accepts α] >

(
1
2 + 2−k

) (
1− 2−(f(n)+1)

)
= 1

2 + 2−k − 2−(f(n)+2) − 2−(f(n)+k+1) > 1
2 , where the last

inequality follows from that k 6 f(n) and k > 1.

On the other hand, for α /∈ L we have Pr[N rejects α] = Pr[N ′ rejects α] ×
(
1− 2−(f(n)+1)

)
+ 2−(f(n)+1) >

1
2

(
1− 2−(f(n)+1)

)
+ 2−(f(n)+1) = 1

2 − 2−(f(n)+2) + 2−(f(n)+1) > 1
2 .

2. LetL be any language over Σ. Design a PPTN ′′ to acceptL as follows. N ′′ first tosses a coin. If the outcome is ‘head’,
it accepts. If the outcome is ‘tail’, it rejects. Clearly, for any α we have Pr[N ′′ accepts α] = Pr[N ′′ rejects α] = 1

2 ,
i.e., N ′′ is a PP′′ machine for L. (It follows that PP′ of the previous exercise is the weakest possible definition of a
meaningful probabilistic complexity class.)

3. In view of Exercise 1 it suffices to show that PPk = PP′ for k > 1.
[
PPk ⊆ PP′

]
LetNk be a PPk machine for a language L. I now design a PP′ machineN ′ for L. N ′ starts by making

k+ 1 coin tosses and treats the outcomes of the tosses as an integer r in binary representation. If 0 6 r 6 2k − 2, N ′

accepts immediately. If r = 2k − 1, N ′ rejects immediately. Finally, if 2k 6 r 6 2k+1 − 1, N ′ simulates Nk on the
input α.

If α ∈ L, the probability that N ′ accepts α is
(

1
2 − 1

2k+1

)
+ 1

2 × Pr[Nk accepts α] >
(

1
2 − 1

2k+1

)
+ 1

2 × 1
2k

= 1
2 . On

the other hand, if α /∈ L, N ′ rejects α with probability 1
2k+1 + 1

2 × Pr[Nk rejects α] > 1
2k+1 + 1

2 ×
(
1− 1

2k

)
= 1

2 .
[
PP′ ⊆ PPk

]
LetN ′ be a PP′ machine for a language L. I now design a PPk machineNk for L. Nk starts by making

k − 1 coin tosses. If the outcomes are not all ‘heads’, Nk rejects its input α, else it simulates N ′ on α.

Nk accepts α ∈ L with probability 1
2k−1 × Pr[N ′ accepts α] > 1

2k−1 × 1
2 = 1

2k
, whereas Nk rejects α /∈ L with a

probability
(
1− 1

2k−1

)
+ 1

2k−1 × Pr[N ′ rejects α] >
(
1− 1

2k−1

)
+ 1

2k−1 × 1
2 = 1− 1

2k
.

4. Clearly, BPP ⊆ BPP′. For the converse let N ′ be a BPP′ machine for L. I want to construct a BPP machine N
for L. Take t = k p2(n) with k large enough so that e−k/3 6 1/3. N iterates N ′ t times and takes the decision
by majority. By Chernoff’s bounds the error probability for N is then 6 1/3. Moreover, N simulates the poly-time
algorithm N ′ only for a polynomial number (t) of times, i.e., N is also a poly-time algorithm.

5. Let L ∈ PP and N a PP (or PP′) algorithm for L. We would like to produce a poly-space deterministic simulation
of N . The idea is to run N for all possible toss outcomes. Let p(n) be a (polynomial) bound on the running time of
N . Thus N can make at most p(n) coin tosses. The following simulation works:

1. Initialize counters c0 = c1 = 0.
2. for each outcome of p(n) coin tosses do:
3. Run N under the current sequence of coin tosses.
4. If N accepts, then increment c1, else increment c0.
5. if (c1 > c0), accept, else reject.

The simulation reuses space for different runs of N . Since N runs in p(n) time and hence in p(n) space too, all the
simulations in Stage 3 requires only polynomial space. Moreover, the counters c0 and c1 store values at most as big as
2p(n). Binary encoding of these values requires O(p(n)) space. Thus the above simulation runs in polynomial space.

6. (a) We know that if P = NP, then the polynomial hierarchy collapses to its zeroth level, namely to P. In particular,
BPP ⊆ Σ2P = P. The reverse inclusion (P ⊆ BPP) is obvious.

Page 2 of 3 17642 Computational Complexity

(b) From RP ⊆ NP ⊆ coRP ⊆ coNP, it follows that NP = coNP = RP = coRP = RP ∩ coRP = ZPP.

(c) Since SAT is NP-complete, it suffices to show that if SAT has a BPP algorithmNB , it also has an RP algorithm
NR. In view of the Chernoff bound, we may assume that the error of NB is 6 3

π2(n+1)2 . NR simulates NB several
times in order to obtain a probably satisfying assignment for the input formula φ, as explained below:

1. Let m be the number of variables in the input formula φ. Call the variables x1, . . . , xm.
2. Call φ0(x1, . . . , xm) := φ(x1, . . . , xm).
3. for i = 1, . . . ,m do:
4. Simulate NB on the input φi with xi set to 0.
5. If NB accepts, set ai := 0, else set ai := 1.
6. Set φi(xi+1, . . . , xm) := φ(a1, . . . , ai, xi+1, . . . , xm).
7. If φ(a1, . . . , am) = 0, reject, else accept.

Clearly, NR runs in poly-time. Moreover, if 〈φ〉 /∈ SAT, Stage 7 rejects 〈φ〉, thereby making the error one-sided.
If 〈φ〉 ∈ SAT, NR may still reject, that is, it ends up in having a non-satisfying assignment of the variables. This
happens, only if (at least) one of the calls of NB gives erroneous result. Let ni be the size of φi. We have ni > m− i.
Therefore, the probability of error is6 3

π2

∑m
i=0

1
(ni+1)2 6 3

π2

∑m
i=0

1
(m−i+1)2 <

3
π2

∑∞
i=0

1
(i+1)2 = 3

π2 × π2

6 = 1
2 .

7. Let C be one of the classes RP and BPP. Let N1 and N2 be two class C machines deciding the languages L1 and L2

respectively. Let ε1 and ε2 be the two errors, as discussed in the text. For RP, ε1 = 0, ε2 6 1/2, whereas for BPP we
take ε1, ε2 6 1/4.

[C is closed under intersection]

Consider the following algorithm N∩, that accepts, if and only if both N1 and N2 accept:

1. Simulate N1 on input α.
2. If N1 rejects, reject (and halt).
3. Simulate N2 on α.
4. If N2 accepts, accept, else reject.

First consider C = RP. N∩ accepts α ∈ L1 ∩ L2 with probability> 1/4 and rejects α /∈ L1 ∩ L2 with probability 1
(since in the second case either α /∈ L1 or α /∈ L2 and so N∩ cannot have any accepting branches).

Next consider C = BPP. N∩ accepts α ∈ L1∩L2 with probability> 3
4× 3

4 = 9
16 . Finally for α /∈ L1∩L2 we consider

two cases. If α /∈ L1, then Pr[N∩ rejects α] = Pr[N1 or N2 rejects α] = Pr[N1 rejects α] + Pr[N2 rejects α] −
Pr[N1 and N2 rejects α] > Pr[N1 rejects α] > 3

4 > 9
16 . If α ∈ L1 \ L2, the probability that N2 is simulated is at

least 3
4 . But then N2 rejects α with probability > 3

4 . Thus Pr[N∩ rejects α] > 3
4 × 3

4 = 9
16 . Since 9

16 is a constant
bounded away from 1

2 , N∩ is a BPP algorithm.

[RP is closed under union]

Consider the following algorithm N∪:

1. Make a coin toss.
2. If the outcome is ‘head’, simulate N1 on the input α, else simulate N2 on α.
3. Echo the decision of the simulated machine.

First assume α ∈ L1∪L2. If C = RP,N∪ accepts α with probability 1
2×Pr[N1 accepts α]+ 1

2×Pr[N2 accepts α] >
1
2 × 1

2 + 1
2 × 1

2 = 1
2 . Now let α /∈ L1 ∪ L2, i.e., α is in neither of L1 or L2. We have no accepting branches and N∪

rejects with certainty.

[BPP is closed under union]

BPP is closed under intersection and complement. Now use the fact that L1 ∪ L2 = L1 ∩ L2.

8. (a) Since every deterministic algorithm can be thought of as a probabilistic one, SPACE(f(n)) ⊆ RSPACE(f(n)).
Also an RSPACE(f(n)) algorithm can be run as a nondeterministic machine (with nondeterministic choices replacing
the coin tosses), implying that RSPACE(f(n)) ⊆ NSPACE(f(n)).

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 5: Randomized computation : Solutions of the exercises Page 3 of 3

(b) As in Part (a) RSPACE′(f(n)) ⊆ NSPACE(f(n)). For proving the converse let N decide L in nondeterministic
space f(n). Since each branch of computation of N terminates, no configuration can repeat in a branch. Moreover,
each branch uses O(f(n)) space, and soN runs in time 2O(f(n)). We may assume that at every stepN has at most two
nondeterministic choices. The above time bound shows that N has at most 22O(f(n))

branches of computation on an
input α of size n. If α /∈ L, all these branches are rejecting, whereas if α ∈ L, then there exists at least one accepting
branch. Therefore, O(22O(f(n))

) random selections of branches reveal the accepting branch with probability > 1/2.
This idea leads to the next algorithm. Unfortunately, however, the number of attempts is doubly exponential in f(n)
and keeping track of counters of that big size requires exponential space. We avoid this problem by using randomized
counters.

1. Repeat the following stages:
2. Make 2O(f(n)) coin tosses. (Don’t remember outcomes.)
3. If all tosses give ‘head’, reject.
4. Simulate N on input α with nondeterministic choices dictated by outcomes of (new) coin tosses.
5. If N accepts, accept.

Stage 2 makes an exponential number of coin tosses. Storing the outcomes requires exponential space and is not
needed (Just maintain an ‘all heads’ flag!). However, a counter that can store integers as big as 2O(f(n)) is required to
ensure that the correct number of times coins are tossed. Binary representation of integers 6 2O(f(n)) requires only
O(f(n)) space. The condition in Stage 3 has probability 2−2O(f(n))

, i.e., after O(22O(f(n))

) iterations the outermost
loop is expected to terminate. This gives us good opportunity to expect with high probability that one accepting
configuration shows up in Stage 5 (provided α ∈ L). On the other hand, if α is not a member of L, no branches
accept, so the algorithm terminates at Stage 3, when an ‘all heads’ outcome is encountered. Each simulation of N
in Stage 4 requires O(f(n)) space and this space can be reused during every simulation. Thus we have designed an
RSPACE′(f(n)) algorithm for L.

Note that this algorithm need not terminate, since the conditions in Stages 3 and 5 may never be met. (We can rewrite
it in the form of a proper algorithm that always terminates. But it may then be difficult to manage with O(f(n))

space!) Its expected running time is, however, O(22O(f(n))

) which is doubly exponential in f(n). This motivates us to
put a cap on the running time and be happier with RSPACE rather than with RSPACE′.

Wait! I never mentioned that there cannot exist better (more time-efficient) randomized simulations of NSPACE
algorithms. The possibility that RSPACE(f(n)) = RSPACE′(f(n)), though unlikely, is not ruled out altogether.

9. The simple RL algorithm for UPATH is as follows:

1. Let m := |V (G)| and v0 := s.
2. for i = 1, 2, . . . , 8m3 do:
3. Choose a neighbor vi uniformly from the set of neighbors of vi−1.
4. If vi = t, accept.
5. No s, t-walk has been discovered in 8m3 steps, so reject.

IfG does not possess an s, t-path, no walk (random or otherwise) from s can reach t and the above algorithm rejects at
Stage 5. On the other hand, if G contains an s, t-path, a random walk from s visits t in 6 8m3 steps with probability
> 1/2 (by the given result). In that case, the algorithm accepts with probability > 1/2. Thus we have a randomized
algorithm for UPATH.

One needs to store only the current vertex vi in the walk and a counter (in binary) that can count up to 8m3, i.e., the
above algorithm requires only logarithmic space. Moreover, its running time is polynomial in the input size (8m3

choices of neighbors). So UPATH ∈ RL.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

