
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 4 : Hierarchy theorems and intractability : Solutions of the
exercises

Section 4.1

1. [2n2 + 3n + 4] First obtain the binary representation of n by counting the input size using a binary counter. This
requires O(n logn) time and O(logn) space. Once n is available, computing the expression 2n2 +3n+4 can be done
in O(log2 n) time and O(logn) space.

[2n] Write 1 to the output. For each input symbol append a 0. In O(n) time and O(n) space we end up with the binary
representation of 2n.

[3n] Count n in binary in O(n logn) time and O(logn) space. Raise 3 to the exponent n using the conventional square-
and-multiply algorithm. The exponentiation requires O(logn) multiplications and squarings, each on operands of size
O(log 3n), i.e., O(n). Using the high-school quadratic multiplication routine yields a running time of O(n2 logn) and
a space requirement of O(n).

[5n
2

] Similar to 3n, except that we have to compute n2 from n, a process that can be done using O(log2 n) time and
O(logn) space.

2. TIME(nk) ⊆ SPACE(nk/ logn) by the given assertion. Since nk logn is o(nk) and nk is space constructible, by
the space hierarchy theorem SPACE(nk/ logn) $ SPACE(nk).

We may have two infinite sequences T1, T2, . . . and S1, S2, . . . of sets with each Tk $ Sk and, at the same time, with⋃
k∈N Tk =

⋃
k∈N Sk. For example, one may take Tk := {1, 2, . . . , k} and Sk := {1, 2, . . . , 2k}. One may easily

construct an example in which each Tk and Sk are infinite. (Just add the negative integers to each Tk and Sk in the
above example.)

3. Obviously NTIME(nk) ⊆ NSPACE(nk). By Savitch’s theorem NSPACE(nk) ⊆ SPACE(n2k). Finally, by the
space hierarchy theorem SPACE(n2k) $ SPACE(n2k+1) ⊆ ⋃i∈N SPACE(ni) = PSPACE.

This does not imply NP =
⋃
k∈N TIME(nk) $ PSPACE, since a sequence of proper subsets of PSPACE may have

a union which is the full of PSPACE.

4. We may assume that f(n) is positive for all n > 0. Let M be a recognizer for L, such that for all n every accepting
branch of M takes6 df(n) steps on an input of size n. I want to construct an O(f(n) log f(n))-time decider M ′ for
L. M ′ is designed as a two-track machine. By time constructibility M ′ first computes the value df(n) in binary and
stores it in a counter in the second track. M ′ then simulates M on the first track and decrements the counter by 1 after
every step of M . The counter is kept close to the head of M ′; whenever M ’s head moves, the counter is also shifted.
If M halts before the counter reaches zero, M ′ echoes M ’s decision and halts. If M does not halt in df(n) steps (i.e.,
the counter attempts to become negative), M ′ rejects and halts.

Clearly, M ′ simulates M correctly. Since the binary counter on the second track is of size O(log f(n)), decrementing
and relocating it requires O(log f(n)) steps of M ′, i.e., M ′ simulates each single step of M in O(log f(n)) time, i.e.,
M ′ has a running time of O(f(n) log f(n)).

The last statement of the exercise follows from the fact that if f(n) is O(nk), then f(n) log f(n) is O(nk+1). Thus a
poly-time recognizable language is poly-time decidable too. The converse implication is obvious.

Section 4.2

1. The following is a poly-time alternating algorithm for UNSAT. Compare this algorithm with the nondeterministic
algorithm for SAT.

Input: 〈φ〉.
1. Universally select an assignment of the variables of φ.
2. Evaluate φ at the selected assignment.
3. If the evaluation outcome is 0, accept, else reject.

Page 2 of 3 17642 Computational Complexity

In general, let L ∈ NP have nondeterministic poly-time decider N . I convert N to an alternating poly-time decider
N̄ of L̄. N̄ is identical to N , except that N ’s accepting state is rejecting for N̄ , N ’s rejecting state is accepting for
N̄ , and every other state of N is a universal state for N̄ . It is easy to prove by the recursive construction of trees
that L(N̄) = L̄. Moreover, N̄ produces identical computation trees as N (except that the labels are changed from
(invisible) ∨ to ∧ at the nodes); so N̄ runs in poly-time too.

2. The following poly-time alternating algorithm decides HALFCYCLE:

Input: 〈G〉, where G is a directed graph.
1. Let m := bn(G)/2c.
2. Existentially select m vertices u1, . . . , um of G.
3 If (u1, . . . , um) is not a cycle in G, reject.
4. Universally select an integer k in the range m < k 6 n(G).
5. Universally select k vertices v1, . . . , vk of G.
6. If (v1, . . . , vk) is a cycle in G, reject, else accept.

Compare this algorithm with the algorithm of Exercise 5 of the Midsem test-paper.

3. The following construction proves all the assertions of this exercise. Let N be an alternating TM accepting language
L. I design an alternating TM N̄ to accept L̄ as follows. N̄ is identical to N with the exceptions:

• N ’s accepting state is rejecting for N̄ .
• N ’s rejecting state is accepting for N̄ .
• N ’s existential states are universal in N̄ .
• N ’s universal states are existential in N̄ .

A proof that L(N̄) = L̄ follows from the recursive construction of trees. N and N̄ have identical running times.

4. [if] P = PH implies NP = Σ1P ⊆ PH = P.

[only if] Given that P = NP, I inductively demonstrate that ΣiP = ΠiP = P for all i > 1. For i = 1, we have
Σ1P = NP = P by hypothesis, whereas Π1P = coNP = P, since P is a deterministic class and so closed under
complementation. Now assume that we have proved ΣiP = ΠiP = P for some i > 1. Take a language L ∈ Σi+1P.
Consider a poly-time ATM N for L that makes at most i + 1 nondeterministic choices. Let α be an input for N and
let c be a configuration of N immediately after it makes the first non-deterministic choice (existential). Since N runs
in poly-time, c is of length bounded by a polynomial in |α|. We run, with 〈N, c〉 as input, an ATM N ′ that, given
the encoding of an ATM N and a configuration c of N on some input, simulates N starting from the configuration c.
Clearly, N ′ accepts 〈N, c〉 for some c, if and only if N accepts α. Moreover, N ′ makes 6 i choices and so decides a
ΠiP language. By induction, L(N ′) = L(M) for a poly-time DTM M . But then we can run M on 〈N,α〉 to know
the same decision of N on α. Since M makes no nondeterministic choices, it follows that L ∈ Σ1P = NP = P. Thus
Σi+1P ⊆ P. The reverse inclusion is obvious. Since coΣi+1P = Πi+1P, it follows that Πi+1P = P too.

5. I prove part (a) only, the proof for the other part being analogous. Let L be a PH-complete language. Since
PH =

⋃
i∈N ΣiP, there exists i0 for which L ∈ Σi0P. Let N be a poly-time Σi0P ATM for L. Now choose

any A ∈ ΣiP for some i > i0. By completeness of L there exists a poly-time reduction from A to L. This reduction
followed by a simulation of N implies that L ∈ Σi0P.

6. The choice of i is questionable in the given proof. There may exist some language L ∈ AP for which the number
of nondeterministic choices increases monotonically with the input size, i.e., the value of i goes unbounded as the
input size goes to infinity, i.e., i cannot be chosen in an input-independent manner as described in the proof. ΣiP and
ΠiP refer to the classes, where at most i choices are sufficient, irrespective of the length of the input. Thus AP may
potentially contain languages that are in neither of the classes ΣiP or ΠiP for any i ∈ N.

Section 4.3

1. (a) Take a poly-time DTM M for L and replace every oracle call of L by the simulation of M . This implies PL ⊆ P.
The reverse inclusion is obvious.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 4: Hierarchy theorems and intractability : Solutions of the exercises Page 3 of 3

(b) PL is closed under complementation, so that coNP = PL = NP.

2. It is easy to see that the language

BIGCYCLE := {〈G〉 | G is a directed graph having a cycle of length > n(G)/2}

is in NP. Let f be a poly-time reduction from BIGCYCLE to SAT. We then have the following nondeterministic
poly-time algorithm for HALFCYCLE that uses the SAT oracle.

Input: 〈G〉 for a directed graph G.
1. Let m := n(G)/2.
2. Nondeterministically select m vertices u1, . . . , um of G.
3. If (u1, . . . , um) is not a cycle in G, reject.
4. Use the poly-time reduction f to obtain α := f(〈G〉).
5. Query the SAT oracle about α.
6. If the oracle answers YES, reject, else accept.

3. (a) Since SAT ∈ NP, PSAT ⊆ ⋃A∈NP PA = PNP. Now let L ∈ PNP, i.e., L ∈ PA for some A ∈ NP. Let N be
a poly-time TM for L, that uses the oracle for A. Since SAT is NP-complete, one may first convert in poly-time an
instance for A to an instance for SAT and then ask the SAT oracle, instead of asking the oracle for A straightaway.
Though this replacement of A by SAT may make the query inefficient, it retains the polynomial behavior of M . Thus
L ∈ PSAT too, i.e., PNP ⊆ PSAT.

Since UNSAT is coNP-complete, we analogously have PUNSAT = PcoNP. Finally, note that PSAT = PUNSAT, since
an answer of the SAT oracle is readily interpreted as an answer for the UNSAT oracle, and vice versa.

(b) As in Part (a) NP-completeness of SAT implies NPNP = NPSAT. Thus it suffices to show that NPSAT = Σ2P.
[
NPSAT ⊆ Σ2P

]
Let L ∈ NPSAT and let M be a nondeterministic poly-time decider of L relative to the SAT oracle.

I first convert M to a nondeterministic poly-time decider M ′ of L, that makes only one query of the SAT oracle
and accepts if and only if the answer is NO. M ′ can nondeterministically guess the correct answers to the oracle
queries. However, these guesses must be validated for correctness. If a query about φ made by M returns YES,
then φ is satisfiable and M can replace the oracle call by a non-deterministic guess for a satisfying assignment. Now
assume that φ1, . . . , φk are all the oracle queries receiving the response NO. This happens, if and only if the formula
φ1 ∨ · · · ∨ φk is unsatisfiable. Thus instead of making individual queries about φ1, . . . , φk, M makes a single query
about φ1 ∨ · · · ∨ φk at the end.

In the second step I convert M ′ to a Σ2P decider M ′′ for L. Note that M ′ makes existential choices followed by
an oracle call that receives the answer NO in case of acceptance. Thus this oracle call can be replaced by a universal
branching on all possible truth assignments of the variables in φ1∨· · ·∨φk and accepting if and only if the assignments
are all non-satisfying.
[
Σ2P ⊆ NPSAT

]
Let N be a Σ2P decider for a language L. Let c be the configuration of N immediately after it

makes the (first) nondeterministic choice. Then the machine N ′ that simulates N starting from c accepts 〈N, c〉 for
some c if and only if N accepts α. Also L(N ′) ∈ Π1P = coNP. Thus the computation of N ′ can be replaced by a
reduction to a Boolean formula, calling the SAT oracle on this formula and accepting if and only if the oracle returns
NO.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

