
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 3 : Space complexity : Solutions of the exercises

Section 3.1

1. (a) Let L be a PSPACE-hard language. For any A ∈ NP ⊆ PSPACE we then have A 6P L.

(b) We already know NP ⊆ PSPACE. To prove the other inclusion take any L ∈ PSPACE. Let L′ be an NP-
complete language. By hypothesis, L′ is PSPACE-hard too, i.e., L 6P L′. But then this reduction followed by a
poly-time nondeterministic algorithm for L′ solves L in nondeterministic poly-time, i.e., L ∈ NP.

2. Use constructions similar to those in Exercise 2.1.4(a).

3. It is easy to see that DTMIN-PLACE ∈ PSPACE: Given 〈M,α〉 one may simulate M on α. Let n := |α|. If M ever
tries to move out of the first n cells or runs too long (i.e., for more that sngf(n) steps, where s the number of states
and g the number tape symbols of M), then reject. Otherwise output M ’s decision on α.

In order to prove the PSPACE-hardness of DTMIN-PLACE take any L ∈ PSPACE. Let M be a DTM for L which
runs in space cnk for some constants c and k. Convert α ∈ Σ∗ to 〈M,α c|α|k−|α|〉. Clearly, α ∈ L if and only if M
accepts the padded string α c|α|k−|α| in place.

4. An LBA is almost the same as an in-place NTM. By an argument similar to that in the previous exercise one can show
that ALBA is in NSPACE(n) and so by Savitch’s theorem in SPACE(n2).

5. Let 〈c〉 be a configuration of the generalized tic-tac-toe game with the next turn by X. One may easily check the
validity of c in poly-space (in fact, poly-time): there must be even number of occupied cells with equal number of the
two markers. One may additionally check if the game has already ended by checking five same consecutive markers
(there are O(n2) positions to check). If there are five consecutive markers of both O and X or only of O, reject. If
there are five consecutive markers only of X, accept. Finally assume that c is a valid unfinished configuration and we
want to check if Player X has a winning strategy from c. If there is no unoccupied cell, reject. Otherwise repeat the
following for each of the unoccupied cells in c’s board:

Put the marker X on the unoccupied cell, giving configuration c′. If c′ is a winning configuration for X, accept. If the
board is full in c′, reject. Otherwise generate from c′ the configurations c′′1 , . . . , c

′′
k by putting exactly one marker O in

an unoccupied cell in c′. Make a recursive call with each c′′i (one by one and reusing space). If all of these recursive
calls output ‘accept’, accept and halt. Otherwise look at another (unexplored) candidate for c′ and repeat.

If all candidates for c′ result in non-acceptance, reject and halt. Note that since we are talking about a winning strategy,
a ‘draw’ is treated as a ‘defeat’ (for Player X).

Each recursion requires storing a few (three) board positions (plus some pointers and some constant number of tape
cells). The depth of the recursion is O(n2). Thus O(n4) space is sufficient to decide GT and the input size is O(n2),
so GT ∈ PSPACE.

Section 3.2

1. For union and intersection use strategies as in Exercise 2.1.4(b).

Kleene closure is a bit tricky. Take any L ∈ NL. Our task is to show that L∗ ∈ NL too. Let N be a log-space NTM
for L. Take α ∈ Σ∗. If α = ε, accept and halt. Otherwise, nondeterministically select a prefix β of α with |β| > 1.
Call γ the remaining part of α, i.e., α = βγ. Simulate N on β. If N accepts, recursively check if γ ∈ L∗. Else this
branch of computation rejects.

If α ∈ L∗, then we have α = β1β2 . . . βk with each βi non-empty and in L. Thus some nondeterministic choices will
reveal β1, β2, . . . , βk in succession. On the other hand, if α /∈ L∗, for any non-empty prefix β of α = βγ we have
either β /∈ L or γ /∈ L∗. Thus all branches of computation reject.

Page 2 of 3 17642 Computational Complexity

Let us now investigate the (nondeterministic) space complexity of our algorithm. The splitting of α in β and γ can be
effected by a constant number of pointers. Checking if β ∈ L can be done in nondeterministic logarithmic space. If
β /∈ L, the branch terminates, else computation restarts on γ. It is not necessary to store β for the computation on γ.

2. (a) Maintain a counter initialized to zero. Read the input sequentially from left to right. When a left parenthesis is
read from the input, increment the counter, and when a right parentheses is read, decrement the counter. If the counter
ever becomes negative or is not restored to zero at the end of the input, reject. Otherwise accept.

(b) Let α be an instance for this problem. If α = ε, accept and halt. Otherwise repeat a procedure as in Part (a),
identifying [as (and] as). If this stage results in rejection, then reject and halt. Otherwise repeat the following for
each symbol a in the input (sequentially from left to right):

If a is) or], skip it. Otherwise a is a left delimiter ((or [). Using a counter (as in Part (a)) find out the matching right
delimiter b. Here also we identify (with [and) with]. If b is not found, or if a and b are of different types (paren and
bracket, or bracket and paren), reject.

If not rejected so far, accept.

3. I show that BIPARTITE ∈ NL. Since NL = coNL, the desired result follows. An undirected graphG is not bipartite,
if and only if G contains an odd cycle. Given G, we then search for odd cycles nondeterministically using log-space.

First nondeterministically choose a vertex u ∈ V (G) and remember u till the end of all branches of computation
originating from the selection of u. Also maintain a current vertex v and a count i. Initially set v := u and i := 0.
While i < m (where m is the number of vertices in G) repeat:

If v has degree 0, reject, else nondeterministically choose an edge (v, v ′) ∈ E(G). Increment i and set v := v′. If i is
odd and v = u, accept. Otherwise, repeat the loop with the new v. If the loop terminates (i.e., if i > m), reject.

It is clear that this nondeterministic algorithm detects odd cycles inG. On the other hand, ifG does not contain an odd
cycle, all branches of computation reject. We need to provide storage only for the vertices u, v, v ′ and for the counter
i. This can be achieved in log-space only.

4. The idea is similar to the proof of the theorem: “If A 6L B and B ∈ L, then A ∈ L”. For the computation of
(g ◦ f)(α) = g(f(α)), don’t compute the full of f(α), because that may require super-log (as high as poly) space.
Whenever a new symbol of f(α) is required for the computation of g, recompute (only) that symbol from α.

5. Since NL = coNL, it suffices to show that 2SAT in NL-complete. In order to prove 2SAT ∈ NL, construct the
graph G as in Exercise 2.2.3. Convince yourself that this construction can be done in (deterministic) log-space. Now
nondeterministically choose a vertex x in G. Use an NL algorithm for PATH to check if G contains both x, x̄ and
x̄, x paths. If both paths exist, accept, else reject. The correctness of this algorithm is established by the claim in
Exercise 2.2.3.

In order to prove the NL-hardness of 2SAT, I show that PATH 6L 2SAT. Given G, s, t we have to construct a 2-cnf
formula φ such that G has an s, t-path if and only if φ is unsatisfiable. Let V (G) = {s, t, y1, . . . , ym}. The resulting
formula φ consists of m+ 1 variables x, y1, . . . , ym. The vertex s is identified (relabeled) with x and the vertex t with
x̄. The clauses of φ will be x ∨ x and ū ∨ v for every edge (u, v) of G. That completes the construction of φ.

In order to show that this construction works, first assume that G has an s, t-path. Let this path be s, u1, . . . , uk, t.
Then φ contains the clauses (x̄ ∨ u1), (ū1 ∨ u2), . . . , (ūk, x̄). If we assign x = 1, at least one of these clauses is not
satisfied (easy check). On the other hand, if x = 0, then the clause (x ∨ x) of φ is not satisfied. So φ is zero for any
assignment of x, y1, . . . , ym.

Conversely, suppose that G contains no s, t-path. Let U be the set of vertices in G reachable from s, V the set of
vertices from which t is reachable and W := V (G) \ (U ∪ V). By hypothesis and construction, U, V,W are pairwise
disjoint, and there are no edges from U to V ∪W or from U ∪W to V . Let me assign the true value to every variable
in U ∪W (including x) and the false value to every variable in V (including the literal x̄). It is now simple to check
that φ is satisfied for this truth assignment.

6. I first show that STRONGLY-CONNECTED is in NL. Nondeterministically choose a pair of vertices s, t of the
input graph G and output the decision of an NL algorithm for PATH on the input 〈G, s, t〉.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 3: Space complexity : Solutions of the exercises Page 3 of 3

Next I reduce PATH to STRONGLY-CONNECTED. Let 〈G, s, t〉 be an instance for PATH. Convert it to a graph
G′ as follows. First copy G to G′ and then for every u ∈ V (G) add the edges (u, s) and (t, u) (if not already present
in G). Avoid loops, if they are aesthetically unpleasant to you.

Assume that G has an s, t-path; call it P . Take any two distinct vertices u, v ∈ V (G′) = V (G). If both u and v are
outside P , then the edge (u, s), the path P and the edge (t, v) constitute an u, v-path in G′. If u is outside P and v is
on P , then the edge (u, s) and the s, v-subpath of P gives a u, v-path in G′. If u is on P and v is outside P , use the
u, t-subpath of P and the edge t, v. Finally, consider that u and v are both on P . If u appears earlier than v in P , use
the u, v-subpath of P . If v appears earlier than u, use the u, t-subpath of P and then the edge (t, v).

Conversely, if G does not contain an s, t-path, neither does G′, since all the edges added to G (to manufacture G′) are
either into s or out of t.

7. In order to see TQBF is PSPACE-complete under log-space reduction look at Papadimitriou (Theorem 19.1). The
reduction TQBF (actually FORMULA-GAME) to GA, as we did in the class, is clearly doable in log-space.

If any of these languages is in NL, it is in SPACE(lg2 n) (by Savitch’s theorem) and so in PolyL. By the previous
result every language in PSPACE is then in PolyL, implying that PolyL = PSPACE, a contradiction.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

