
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 2 : Time complexity : Solutions of the exercises

Section 2.1

1. Whether a graph G is connected can be determined (in poly-time) by growing a BFS tree rooted at any vertex of the
graph. G is connected, if and only if this tree spans all the vertices of G.

A graphG is bipartite, if and only if every component ofG is bipartite. For proving if a connected graphG is bipartite,
we grow a BFS tree rooted at any node of G. It’s a property of the BFS algorithm that if there is an edge in G between
a node at distance i and a node at distance j from the root of the spanning tree, then we must have i = j or |i− j| = 1.
It’s well-known that G is bipartite, if and only if G does not contain an odd cycle. It follows that G is bipartite, if and
only if it does not contain an edge between two nodes at the same distance from the root in the spanning tree.

In order to check if a graphG withm vertices is triangle-free, it is sufficient to consider all triples (u, v, w) of pairwise
distinct vertices of G. There are only

(
m
3

)
= O(m3) of such triples.

2. If G1
∼= G2, a bijective map G1 → G2 that respects adjacency in the two graphs constitutes a succinct certificate for

the isomorphism.

3. We know that the multiplicative groupZ∗p is cyclic and of order p−1, if and only if p is a prime. Let p−1 = pe11 · · · perr
be the prime decomposition of p − 1. If p is prime, then g ∈ Zp generates Z∗p if and only if g(p−1)/pi 6≡ 1 (mod p)
for all i = 1, . . . , r. Each such modular exponentiation can be carried out in poly-time by the repeated square-and-
multiply algorithm. So g along with the prime divisors of p − 1 produces a certificate for the primality of p. One
may additionally supply the exponents e1, . . . , er, but those can be computed in deterministic polynomial time (for
the check that p− 1 = pe11 · · · perr).

This certificate is incomplete, because it does not include a certificate that each pi is prime. But each such certificate
can be generated inductively. In other words, a certificate C(p) for p looks like:

C(p) = (g, (p1, e1, C(p1)), . . . , (pr, er, C(pr))).

The induction stops for the prime 2 for which 2 − 1 has a trivial factorization. As an example, consider p = 67. 2 is
a generator of Z∗67. Also 67 − 1 = 66 = 2 × 3 × 11. In this decomposition 2 is surely prime. 3 is a prime, because
3 − 1 = 2 has a certifiable prime decomposition and 2 is a generator for Z∗3. With 11 we have to do more. 8 is a
generator of Z∗11, 11− 1 = 10 = 2× 5, 2 is prime, and finally 5 is prime, since 3 generates Z∗5 and 5− 1 = 4 = 22.
To sum up we have:

C(67) = (2, (2, 1, C(2)), (3, 1, C(3)), (11, 1, C(11)))

= (2, (2, 1, (1)), (3, 1, (2, (2, 1, C(2)))), (11, 1, (8, (2, 1, C(2)), (5, 1, C(5)))))

= (2, (2, 1, (1)), (3, 1, (2, (2, 1, (1)))), (11, 1, (8, (2, 1, (1)), (5, 1, (3, (2, 2, C(2)))))))

= (2, (2, 1, (1)), (3, 1, (2, (2, 1, (1)))), (11, 1, (8, (2, 1, (1)), (5, 1, (3, (2, 2, (1)))))))

But how big is this certificate C(p). One can inductively prove that |C(p)| = O(lg2 p), since
∏r
i=1 pi 6 p− 1, each

ei 6 lg p and r 6 lg p. It is also easy to check that this certificate can be verified in O(lg4 p) time. For details look at
Papadimitriou, Section 10.2.

4. (a) Let L1, L2 ∈ P with respective poly-time DTMs M1 and M2. We will construct poly-time DTMs for the
following languages. We assume that α is the input.

[L1 ∪ L2]
Simulate M1 on α. If M1 accepts, accept and halt. Otherwise, simulate M2 on α. If M2 accepts, accept and halt,
otherwise reject and halt.

[L1]
Simulate M1 on α and flip its decision.

Page 2 of 6 17642 Computational Complexity

[L1 ∩ L2]
Simulate M1 and M2 sequentially on α. Accept, if both M1 and M2 accept; else reject. Alternatively, use the fact that
L1 ∩ L2 = L1 ∪ L2.

[L1L2]
Let α = a1a2 . . . an. For each i ∈ {0, 1, . . . , n} check if βi := a1 . . . ai ∈ L1 and γi := ai+1 . . . an ∈ L2 by
simulating M1 and M2 on βi and γi respectively. If there is an i for which βi ∈ L1 and γi ∈ L2, accept; else reject.

[L∗1]
Again let α = a1a2 . . . an. For each i, j with 1 6 i 6 j 6 n check if βi,j := ai . . . aj ∈ L1 by simulating M1 on
βi,j . Now generate an n× n matrix T := (ti,j). Only the entries ti,j for i 6 j (i.e., the entries on and above the main
diagonal) will be used. Generate T in the diagonal-major order. First for i = 1, . . . , n set ti,i = 1 if βi,i ∈ L1; else set
βi,i = 0. Then for i = 1, . . . , n − 1 set ti,i+1 = 1 if βi,i+1 ∈ L1, or if ti,i = ti+1,i+1 = 1; else set ti,i+1 = 0. Now
inductively assume that ti,j are generated for all i, j with 0 6 j − i < l. Then for i = 1, . . . , n − l set ti,i+l = 1 if
βi,i+l ∈ L1 or if ti,k = tk+1,i+l = 1 for some k ∈ {i, i+ 1, . . . , i+ l − 1}.

(b) The constructions of Part (a) apply mutatis mutandis for NTMs. The only exception is with L1. Convince yourself
why the construction for DTMs does not work with NTMs in this case.

Section 2.2

1. Clearly, L ∈ NP. Take any A ∈ NP. We have to show that A 6P L. Since L is neither empty nor Σ∗, we can find
β ∈ L and γ ∈ L. Now we construct a poly-time computable function f : Σ∗ → Σ∗ such that α ∈ A if and only if
f(α) ∈ L. Since P = NP, first decide in deterministic poly-time whether α ∈ A. Then set f(α) = β if α ∈ A; else
set f(α) = γ. Since β and γ have constant lengths (with respect to |α|), this last step can be done in deterministic
poly-time.

2. Assume that δ(q1, a) = {(q2, b, L), (q3, c, R)}. Then both
c q1

q2 c
and

q1 a
c q3

are legal 2 × 2 windows. If we

conjoin these windows at the facing columns, we get the 2× 3 window
c q1 a
q2 c q3

which is clearly illegal.

3. We reduce 2SAT to PATH in poly-time. Since PATH ∈ P (and P is closed under complement), this reduction will
show that 2SAT ∈ P too. Carefully look at the direction of the reduction. When we want to prove a problem is easy,
we reduce this problem to a problem that is already known to be easy. On the other hand, when we want to prove a
problem is difficult, we reduce a known difficult problem to this new problem.

Back to the business! Given a formula φ in 2-cnf, we construct a graph G such that φ is not satisfiable if and only if
there are u, v and v, u paths in G for some u, v ∈ V (G). The construction first: Let φ = (a1 ∨ b1)∧ (a2 ∨ b2)∧ · · · ∧
(al ∨ bl). For each variable x create a node labeled x and another labeled x̄. For each clause (a∨ b) add an edge from
node ā to node b and also an edge from b̄ to node a. That’s all!

Claim φ is not satisfiable, if and only if for some variable x the graph G contains both x, x̄ and x̄, x paths.

Proof [if] Suppose that there is such a variable x. Consider an arbitrary assignment of the variables. Assume that
x = 0 in this assignment. (The other case can be handled symmetrically.) G contains an x̄, x-path. But x̄ = 1 and
x = 0; so there exists an edge (u, v) on this path such that u = 1 and v = 0. By construction (ū ∨ v) is a clause in φ
and this clause (and hence φ) evaluate to 0 under this truth assignment.

[only if] Suppose that there is no such variable x. We have to obtain a satisfying assignment for φ. Repeat the following
steps, as long as there is a node in G that has not been assigned a truth value. “Choose such a node a for which G
does not contain an a, ā path. Assign all nodes reachable from a (including a itself) the value 1 and all complements
of these nodes the value 0.”

First note that such a choice for a is always possible, since G does not contain both a, ā and ā, a paths for any a and
we assign truth values to literals b and b̄ simultaneously (and consistently). Next we show that the truth assignment in
the loop is well-defined, i.e., we do not attempt to make a node b simultaneously true and false. Assume that there is
such a b. First consider that b (and b̄) are not assigned truth values earlier. But then there are a, b and a, b̄ paths in G.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 2: Time complexity : Solutions of the exercises Page 3 of 6

By symmetry in the construction there is also a b, ā path in G and hence an a, ā path in G, contrary to the choice of
a. Next consider that there is an a, b path with b assigned false earlier. But then there is a b̄, ā path and b̄ = 1. Thus ā
must have been considered earlier, again a contradiction to the choice of a.

Thus the procedure of truth assignment terminates with a logically consistent assignment of truth values to the nodes
in G. In this assignment there is no edge from a true literal to a false literal. If (a ∨ b) is a clause in φ, then both (ā, b)
and (b̄, a) are edges in G. If a = 0 in the assignment, then ā = 1 and so b = 1. Similarly, if b = 0, we have a = 1.
Thus we always have a ∨ b = 1 in this assignment. J

4. We solve this exercise only for directed graphs, the construction for undirected graphs being similar.

Clearly, HAMCYCLE ∈ NP. In order to prove HAMCYCLE is NP-hard, we reduce HAMPATH to HAMCYCLE.
Let G = (V,E) be a directed graph with two vertices s and t. We plan to convert 〈G, s, t〉 to a directed graph
G′ = (V ′, E′) such that G has an s, t Hamiltonian path if and only if G′ has a Hamiltonian cycle. Take

V ′ := V] {u}, and
E′ := E ∪ {(u, s), (t, u)}.

Suppose that G has an s, t Hamiltonian path s, v1, v2, . . . , vm, t. Then u, s, v1, v2, . . . , vm, t, u is a Hamiltonian cycle
inG′. Conversely, letG′ have a Hamiltonian cycle. If we traverse around the cycle starting from u, we must first reach
s after leaving u. In order to complete the cycle we must take the edge (t, u). Between s and t the cycle visits every
other node of G exactly once, i.e., this cycle must be of the form u, s, v1, v2, . . . , vm, t, u. But then s, v1, v2, . . . , vm, t
is an s, t Hamiltonian path in G.

5. Clearly, TSP ∈ NP. To prove TSP is NP-hard we reduce UHAMCYCLE to TSP. Let G be an instance for
UHAMCYCLE. Let m be the number of vertices in G. Consider the complete graph G′ with V (G′) = V (G)

and with the cost of edge (u, v) equal to
{

1 if (u, v) ∈ E(G),
m+ 1 if (u, v) /∈ E(G). Then the converted instance for TSP will be

〈G′,m〉. Clearly, a Hamiltonian cycle in G translates to a Hamiltonian cycle in G′ with each edge cost equal to 1.
Conversely, if G′ has a Hamiltonian cycle of cost6 m, that cycle cannot use an edge of cost m+ 1, i.e., an edge not
in E(G). Thus this cycle resides in G as well.

6. Clearly, DOUBLE-SAT ∈ NP. We then show SAT 6P DOUBLE-SAT. Let φ = φ(x1, . . . , xm) be an instance
for SAT. We convert φ to an instance φ′ for DOUBLE-SAT. If m = 0, take φ′ := φ ∨ y for a new variable
y. In this case, if φ = 0, then φ′ has only one satisfying assignment, namely y = 1, whereas if φ = 1, then
both the choices for y let φ′ evaluate to 1. So assume that m > 1. Introduce new variables y1, . . . , ym and take
φ′ := φ(x1, . . . , xm)∨φ(y1, . . . , ym). If φ is unsatisfiable, so is φ′ too. If φ is satisfiable, take a satisfying assignment
of x1, . . . , xm for φ and let y1, . . . , ym assume any of the 2m > 2 possible values.

7. (a) A graph is 2-colorable if and only if it is bipartite. We have proved BIPARTITE ∈ P.

(b) We clearly have 3COLOR ∈ NP. We show that 3SAT 6P 3COLOR. The reduction procedure is a bit
complicated. Let φ = (a1 ∨ b1 ∨ c1)∧ · · · ∧ (am ∨ bm ∨ cm) be a 3-cnf formula in k variables x1, . . . , xk. Our aim is
to construct an undirected graph G with the property that G is 3-colorable if and only if φ is satisfiable.

Let us name the colors as 0, 1, 2 with the logical implication that 0 means ‘false’, 1 means ‘true’ and 2 means neither!
We first create a triangle with nodes representing the colors 0, 1, 2. Then for each variable xi create two nodes labeled
xi and xi and complete the triangle on these two nodes and the color node 2. Finally, consider a clause (a ∨ b ∨ c) in
φ. Create six nodes a, b, c, d, e, f . Add edges to make a triangle on a, d, e and another on b, c, f . Join d to color node
0, e to f and each of a, b, c to the same literal in the variable gadgets. This construction is described in Figure 2.1.
Only one clause (x1 ∨ x2 ∨ xk) is shown in this figure.

For the proof of the correctness of this construction first note that every triangle is 3-colorable, but not 2-colorable.
That is, the three nodes in any triangle must receive three different colors. We now claim that G is 3-colorable if and
only if each clause gadget has a true literal.

First consider a (valid) 3-coloring of G. Permute the colors, if necessary, so that the color node i receives color i for
each i = 0, 1, 2. Since each variable gadget xi forms a triangle with the color node 2, we must have the colors of xi

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 4 of 6 17642 Computational Complexity

Figure 2.1: Reduction of 3SAT to 3COLOR

0 1

2
Color gadgets

Variable gadgets

Clause gadget

x x x1 2 kx1 2x xk

a b c

d

e

f

. . .

and xi either 0, 1 or 1, 0. In the former case assign xi the truth value 0 (false); in the other case the truth value 1 (true).
I have to show that this truth assignment makes at least one literal true in each clause gadget. Suppose, on the contrary,
that there is a clause (a ∨ b ∨ c) for which the above truth assignment gives a = b = c = 0. Consider the gadget (on
nodes a, b, c, d, e, f) for this clause. The nodes b and c in this clause gadget cannot receive the color 0 (since they are
connected to nodes with color 0 in variable gadgets). Since b, c, f from a triangle, f must then receive the color 0. But
then e cannot receive color 0. Also since the literal a is false, the node a in the clause gadget cannot also receive the
color 0. Thus node d must receive color 0. But d is adjacent to the color node 0, a contradiction.

For the converse, consider a satisfying assignment for φ. If xi = 0, color xi by 0 and xi by 1 in the variable gadget
for xi. If xi = 1, do the reverse coloring. Also give the color 0, 1 and 2 to the color nodes 0, 1 and 2 respectively.
What remains is to color vertices in each clause gadget in a valid manner. Since there is no edge between two different
clause gadgets, we can color each such gadget independently. Consider the clause gadget with nodes a, b, c, d, e, f for
the clause (a ∨ b ∨ c). The following table summarizes valid colorings for all truth values of the literals a, b, c with at
least one true.

Truth Coloring
a b c a d e b c f
0 0 1 2 1 0 1 0 2
0 1 0 2 1 0 0 1 2
0 1 1 2 1 0 0 2 1
1 0 0 0 1 2 1 2 0
1 0 1 2 1 0 1 0 2
1 1 0 2 1 0 0 1 2
1 1 1 2 1 0 0 2 1

Section 2.3

1. (a) It is easy to see that the constructions of Exercise 2.1.4 work for the class EXP as well.

(b) Let A ∈ coNP. Then A ∈ NP and so A ∈ EXP. But EXP is closed under complement, so A ∈ EXP.

2. The idea behind this problem is that when an NTM says ‘accept’, the input gets accepted. However, a branch of

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 2: Time complexity : Solutions of the exercises Page 5 of 6

computation ending in a ‘reject’ verdict does not necessarily imply rejection of the input. That leaves us in the
‘notsure’ case.

[if] Let L ∈ NP∩ coNP. Let N and N̄ be two poly-time NTMs accepting L and L̄ respectively. Create a strong NTM
S to accept L as follows. S runs the two machines N and N̄ sequentially on the (same) input α. First, if the simulated
N accepts α, S also accepts and halts. If N (i.e., a branch of N) rejects, S simulates N̄ on α. If N̄ accepts, S rejects
α and halts. If N̄ also rejects (like N), S halts after outputting ‘notsure’. If α ∈ L, at least one branch of computation
of N and hence of S lead to its acceptance. On the other hand, if α /∈ L, no branch of N accepts it, but at least one
branch of N̄ accepts it. Thus a rejecting branch of computation by S is available from an accepting branch of N̄ .

[only if] Let S be a poly-time strong NTM that decides L. First design a poly-time NTM N to accept L: simulate S
with the ‘notsure’ outcomes of S changed to ‘reject’. Conversely, an NTM N̄ for L̄ can be designed by simulating S
with the ‘reject’ outcomes of S interpreted as ‘accept’ for N̄ , and with ‘accept’ and ‘notsure’ outcomes of S interpreted
as ‘reject’.

3. Observe that n has a divisor d with 1 < d < k if and only if n has a prime divisor p with 1 < p < k. So a
complete factorization of n is a succinct certificate for both FACTORING and FACTORING. Since PRIME ∈ NP,
this certificate must be furnished with certificates of primality for each of its prime divisors. Now we know that
PRIME ∈ P, so these primality certificates are actually not necessary.

(Note that a divisor d of n with 1 < d < k is also a succinct certificate for FACTORING. For FACTORING,
however, existence of a similar certificate is not obvious.)

4. Let L ∈ NEXP and let N be an NTM that decides L in time 2n
k

for some k ∈ N. Define the language

L′ := {α 2|α|
k−|α| | α ∈ L}, where is a ‘quasiblank’ symbol. We design a poly-time NTM N ′ for L′. Upon

input α′ the machine N ′ first checks if α′ is of the form α 2|α|
k−|α| for some α ∈ Σ∗. If not, N ′ rejects α′ and halts.

Otherwise, N ′ simulates N on α, this time treating quasiblanks as blanks. N ′ runs in exp-time in |α| and hence in
poly-time in |α′|, i.e., N ′ is a poly-time NTM for L′.

By hypothesis, P = NP and so there is a poly-time DTM M ′ to accept L′. What remains is to convert M ′ to an exp-

time DTM M to accept L. M on input α appends the requisite number of quasiblanks to obtain α′ := α 2|α|
k−|α|,

and simulates M ′ on α′. M accepts α if and only if M ′ accepts α′.

Section 2.4

1. Assume that TSP ∈ P. Let M be a DTM that decides TSP in poly-time. We may assume without loss of generality
thatM has the binary input alphabet. We construct a DTMM ′ that solves TTSP using polynomially many invocations
of the machine M . Let α = 〈G〉 be an input for TTSP, where G is a complete graph with labeled edges. Suppose
n := |α|. Since each edge weight is encoded in α, G cannot have a Hamiltonian cycle of weight > 2n. M ′ simulates
TSP on 〈G, 2n−1〉. If M returns ‘yes’, i.e., if G contains a Hamiltonian tour of total cost 6 2n−1, M ′ invokes M
with input 〈G, 2n−2〉, else M ′ invokes M on input 〈G, (2n + 2n−1)/2〉. In general, if M ′ has computed that a cost of
c is attainable, whereas a cost c′ is not, for some c, c′ with c′ < c (initially c = 2n and c′ = 0), M ′ simulates M on
〈G, (c + c′)/2〉 in order to reduce the search space from [c′, c) to [c′, (c + c′)/2) or [(c + c′)/2, c) depending on the
outcome of this simulation. It is clear that O(n) invocations of M suffice to determine the exact cost, call it C, of an
optimal Hamiltonian tour in G.

Now M ′ repeats the following steps for each edge e of G (chosen in some arbitrary order): M ′ changes the label of e
to C + 1 and simulates M on this new graph and on the cost C. If M returns ‘yes’, there is an optimal Hamiltonian
tour that does not use e, and the cost of e is maintained at C + 1. If M returns ‘no’, every optimal Hamiltonian tour
uses e, so its cost is changed back to the old value and another edge of G is considered.

When all edges of G are considered, G has precisely n edges whose costs are not equal to C + 1. These edges form
an optimal Hamiltonian tour in G. Notice that G may have many such tours. The tour computed as above depends on
the order in which the edges of G are processed. Since G has

(
n
2

)
= O(n2) edges, M ′ makes O(n2) simulations of

M , each on an input of size polynomial in n. Thus M ′ runs in poly-time in n.

2. This exercise can be solved using a binary search algorithm similar to the one described in Exercise 2.4.1. Given
a poly-time DTM M for FACTORING, we construct a poly-time DTM M ′ for TFACTORING as follows: Let

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 6 of 6 17642 Computational Complexity

α := 〈m〉 be an input for M ′. M ′ first calls M on input 〈m,m〉. If the outcome is ‘no’, m is prime and the
factorization of m is available. Otherwise, M ′ calls M on 〈m, bm/2c〉. If the outcome is ‘yes’, M ′ calls M on
〈m, bm/4c〉, else on 〈m, b3m/4c〉. Proceeding in this way M ′ determines the smallest (non-trivial) divisor p1 of m.
Clearly, p1 has to be prime. M ′ determines the multiplicity e1 of p1 in m. If m = pe11 , M ′ is done, else it repeats the
above steps on m/pe11 .

(Notice that m is composite, if and only if it has a divisor 6 b√mc. This observation allows us to make the above
search somewhat more efficient. For the time being, we are not bothered by efficiency issues anyway.)

3. Since the total number of non-empty subsets of {a1, . . . , an} is 2n−1, by the pigeon-hole principle there exist at least
two (distinct) subsets S ′ and T ′ having the same sum. Let U := S ′ ∩ T ′. Take S := S′ \U and T := T ′ \U . Clearly,
S and T are disjoint, non-empty and continue to have the same sum.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

