
17642 Computational Complexity
Mid Semester Examination, Autumn 2003-04

Solutions

1. FALSE. We additionally require the condition B ∈ NP.

2. FALSE. Let α be an input of size n for A. Call the reduction map f , i.e., f(α) is an input for B. Since f is
computable in time O(nk), the string f(α) can be of length as big as O(nk). Subsequent application of the
algorithm for B then runs in O((nk)k), i.e., O(nk

2
), time. For k > 1 we have k2 > k.

3. TRUE. Description of a cycle in G of length > bn(G)/2c is a succinct certificate for 〈G〉 to be in
BIGCYCLE, i.e., BIGCYCLE ∈ NP. For the NP-hardness, I show HAMCYCLE 6P BIGCYCLE.
Let G be an instance for HAMCYCLE with m vertices. Add (exactly) m isolated vertices to G, thereby
obtaining a graph G′ on 2m vertices. It is evident that G′ has a cycle of length m (i.e., > bn(G′)/2c), if and
only if G has a Hamiltonian cycle.

4. FALSE (under the assumption that NP 6= coNP). I first show that SMALLCYCLE ∈ coNP. If 〈G〉 is
not in SMALLCYCLE, then we can convince one about this fact either by indicating that G is acyclic
or by explicitly providing a cycle in G of length > bn(G)/2c. That’s a succinct and poly-time verifiable
disqualification for G. Now if SMALLCYCLE were NP-complete, we would have NP = coNP.

5. FALSE. An NTM accepts, if and only if there is an accepting branch of computation. For the given algorithm
a branch accepts, if and only if a cycle (u1, . . . , um) is detected and some choice of v1, . . . , vk does not lead
to a cycle. However, another choice of v1, . . . , vk may lead to a big cycle. That’s not taken care of.

6. FALSE. The following two graphs are not isomorphic, since the left graph contains a triangle, whereas the
right one, being bipartite, is triangle-free. But the given algorithm accepts this pair with successive choices
of u and v as shown (with subscripts indicating the iteration number). (Note that throughout the computation
on this example, the (sorted) degree sequences of the two graphs remain the same.)

u

u

u u

u

3

5

v

vv

1

35

2

1

4

v2 v4

7. FALSE. Since NL = coNL, the concepts NL-complete and coNL-complete are the same. We know that
PATH is NL-complete and so must be PATH. However, PATH ∩ PATH is the empty language, which
can not be complete in any useful complexity class.

8. FALSE. Since it is widely assumed that NP 6= coNP, the reasoning of the previous exercise does not work.
I will anyway use a kind of intersection, but not at the level of languages. I first show that the languages

BIGCLIQUE := {〈G〉 | G has a clique of size > 1 + n(G)/2} and

BIGINDSET := {〈G〉 | G has an independent set of size > 1 + n(G)/2}

on undirected graphs are both NP-complete. BIGCLIQUE is clearly in NP — a listing of the vertices in
a big clique constitutes a succinct certificate. One can reduce CLIQUE to BIGCLIQUE in poly time as
follows. Let 〈G, k〉 be an instance for CLIQUE. We want to produce a graph G′ such that G′ has a big
clique if and only if G has a k-clique. Call m := n(G). If k > 1 + m/2, then G′ is obtained from G by
adding 2k−m− 2 isolated vertices to G. On the other hand, if k < 1 +m/2, add m− 2k+ 2 new vertices
to G and edges connecting each pair of these new vertices and each new vertex to each old vertex of G. It

is simple to check that this construction works. For BIGINDSET, which is again in NP evidently, use the
reduction from BIGCLIQUE to BIGINDSET that maps a graph G to its complement Ḡ.
I claim that BIGCLIQUE ∩ BIGINDSET = ∅. Suppose not, i.e., some 〈G〉 belongs to this intersection.
Let S be a big clique and T a big independent set in G. If u, v are two distinct vertices in S ∩ T , then the
edge (u, v) is both in G (a part of a clique) and not in G (a part of an independent set). Thus |S ∩ T | 6 1.
But then n(G) > |S∪T | = |S|+ |T |− |S∩T | > (1 + n(G)/2)+(1 + n(G)/2)−1 = 1+n(G) > n(G),
which is absurd.

9. TRUE. Here is a deterministic log-space algorithm for TRIANGLE-FREE:

1. for each triple (u, v, w) of vertices in G
2. if all of (u, v), (v, w) and (w, u) are edges of G, reject.
3. Accept.

This algorithm need only store the three vertices u, v, w and must employ a mechanism to step through all
possibilities – both achievable in log-space.

10. TRUE. We already know that 3COLOR is NP-complete. Because we have used the same reduction
mechanism (poly-time) for defining completeness in both NP and PSPACE, PSPACE = NP implies that
3COLOR is PSPACE-complete. For proving the converse, assume that 3COLOR is PSPACE-complete.
Take any L ∈ PSPACE. By definition we then have L 6P 3COLOR. But then this reduction followed
by an NP algorithm for 3COLOR solves L in nondeterministic poly-time, implying that L ∈ NP, i.e.,
PSPACE ⊆ NP. The reverse inclusion is well-known.

Dr. Abhijit Das, Dept. of Computer Science & Engg, Indian Institute of Technology, Kharagpur 721 302

