February 22, 2004

<u>*Prove or disprove*</u> any <u>*eight*</u> of the following assertions. Give brief (but clear) justifications. No credits will be given for incorrect/incomplete/missing explanations, even though the truth value is correctly assigned. (5×8)

You may make use of the assumption that $NP \neq coNP$, if necessary. Clearly indicate where you require this assumption.

- 1. If A is NP-complete and log-space reducible to B, then B is also NP-complete.
- **2.** An $O(n^k)$ reduction algorithm from A to B followed by a deterministic $O(n^k)$ algorithm for B yields an $O(n^k)$ deterministic algorithm for A. (Here n is the input size, and k is a positive integer constant > 1.)
- **3.** The language BIGCYCLE := $\{\langle G \rangle \mid G \text{ is a directed graph having a cycle of length } \geq \lfloor n(G)/2 \rfloor\}$ is NP-complete. (Here n(G) denotes the number of vertices in G, and $\lfloor \rfloor$ the floor function.)
- 4. The language SMALLCYCLE := { $\langle G \rangle$ | The longest cycle in the directed graph G is of length $\leq \lfloor n(G)/2 \rfloor$ } is NP-complete.
- 5. The language HALFCYCLE := { $\langle G \rangle$ | The longest cycle in the directed graph G is of length $\lfloor n(G)/2 \rfloor$ } is decided by the following (poly-time) nondeterministic algorithm:
 - 1. Compute $m := \lfloor n(G)/2 \rfloor$.
 - 2. Nondeterministically select m vertices u_1, \ldots, u_m of G.
 - 3. If u_1, \ldots, u_m (in that order) do not constitute a cycle, *reject*.
 - 4. Nondeterministically generate an integer k in the range $m < k \leq n(G)$.
 - 5. Nondeterministically select k vertices v_1, \ldots, v_k of G.
 - 6. If v_1, \ldots, v_k (in that order) constitute a cycle, *reject*, else *accept*.
- 6. The language GRAPHISO := { $\langle G_1, G_2 \rangle$ | The undirected graphs G_1 and G_2 are isomorphic} is decided by the following (poly-time) nondeterministic algorithm:
 - 1. If G_1 and G_2 contain different numbers of vertices, *reject*.
 - 2. If each of G_1 and G_2 contains only one vertex, *accept*.
 - 3. Nondeterministically select vertices u of G_1 and v of G_2 .
 - 4. If the degree of u in G_1 is different from the degree of v in G_2 , reject.
 - 5. Delete u from G_1 and v from G_2 .
 - 6. Go to Step 2. [recursive call]
- 7. The intersection of two NL-complete languages (over the same alphabet) must be NL-complete too.
- 8. The intersection of two NP-complete languages (over the same alphabet) must be NP-complete too.
- 9. The language TRIANGLE-FREE := { $\langle G \rangle | G$ is a triangle-free undirected graph} is in L.
- **10.** The language $3\text{COLOR} := \{\langle G \rangle \mid \text{The undirected graph } G \text{ is 3-colorable} \}$ is PSPACE-complete if and only if PSPACE = NP.

Check-sum: In the above set, there are more false assertions than true!