
17642 Computational Complexity
End Semester Examination, Autumn 2003-04

Solutions

1. Well! This is the integer factoring problem with the inputs given in the unary representation. We know
that the unary representation is exponentially long compared to the binary representation. Any reasonable
algorithm that solves the integer factoring problem in time exponential in the binary size of the operands
takes time polynomial in the unary size. For example, one may first compute the binary representations of
m and k from the input and then try dividing m in succession by 2, 3, . . . , k. If any of the divisions results
in zero remainder, the algorithm accepts. If all divisions give non-zero remainders, the algorithm rejects.

2. Let (C0, C1, C2, . . .) be a uniform family of NCj circuits deciding the language L. Inverting the output of
each Cn (using a single NOT gate) gives a new circuit family that decides L. This addition increases the
size and depth of each Cn by 1 and so, in particular, does not add to the asymptotic size or depth complexity
of the original family. Moreover, the log-space transducer that can manufacture (C0, C1, C2, . . .) knows the
output gate of each Cn and so can add another NOT gate to it using no more than an additional logarithmic
space.

3. Suppose that f is one-way. Then, among other things, f is injective, i.e., f(α) = α for every α ∈ Σ∗. But
then f−1(α) = α for every α, i.e., f−1 is trivially in FP, a contradiction.

4. We know that if any NP-hard language is in coNP, or symmetrically, if any coNP-hard language is in NP,
then NP = coNP. Thus we can take A = SAT and B = UNSAT = SAT.

5. We have seen how an AC0 circuit can add two n-bit (or 2n-bit) integers given in binary representation.
Since AC0 ⊆ NC1, addition can be done also by NC1 circuits. For multiplication of two integers
a := (an−1 . . . a1a0)2 and b := (bn−1 . . . b1b0)2 one first computes 2iabi for i = 0, 1, . . . , n− 1 in parallel.
Since 2iabi is either all zeros or a shifted version of a depending on whether bi = 0 or bi = 1, a constant-
depth poly-size circuit can produce all these values. Now we view each 2iabi as a 2n-bit number and employ
a height-balanced binary tree of 2n-bit adders to compute ab. Each such adder is itself of logarithmic depth
and polynomial size. It follows that the overall multiplier circuit is of log-square depth and polynomial size.

6. Suppose that TIME(n) = NL. I then claim that TIME(n2) ⊆ NL. This claim implies that TIME(n2) ⊆
TIME(n), a contradiction to TIME(n) $ TIME(n2), a fact that follows from the time hierarchy theorem.
For the proof of the claim take L ∈ TIME(n2) and consider the language

L′ := {α |α|2−|α| | α ∈ L},

where is a quasiblank symbol. Since L ∈ TIME(n2), we have L′ ∈ TIME(n) and so L′ ∈ NL. But
then an NL machine N ′ for L′ can be converted to an NL machine N for L as follows. N first appends the
requisite number of quasiblanks to its input α and then simulates N ′ on this padded input α′. If |α| = n,
|α′| = n2 and so the non-deterministic space complexity of N is O(log(n2)), which is again O(log n), i.e.,
L ∈ NL.

7. Let N1 and N2 be PP machines respectively deciding the languages L1 and L2 (over the same alphabet Σ).
Consider the following algorithm N :

Input: α ∈ Σ∗.

Stages:
1. Simulate N1 on α.
2. Simulate N2 on α.
3. If N1 and N2 differ about the acceptance of α, accept, else reject.

Let α ∈ L1 \L2. Since α ∈ L1, for some 0 < δ1 6 1
2 we have Pr[N1 accepts α] = 1

2 + δ1. Similarly, since
α /∈ L2, Pr[N2 rejects α] = 1

2 + δ2 for some 0 < δ2 6 1
2 . (Note that the biases δ1 and δ2 may, in general,

be dependent on α, but can be (uniquely) obtained from the computation trees of N1 and N2 on α. In fact,
a PSPACE machine can compute them. However, we don’t have to know their exact values; all we require
is that they are both positive.) We then have:

Pr[N accepts α] = Pr[N1 accepts α]× Pr[N2 rejects α] + Pr[N1 rejects α]× Pr[N2 accepts α]

=

(
1

2
+ δ1

)(
1

2
+ δ2

)
+

(
1

2
− δ1

)(
1

2
− δ2

)
=

1

2
+ 2δ1δ2 >

1

2
.

Symmetrically N accepts α ∈ L2 \ L1 with probability > 1
2 .

Next take α ∈ L1 ∩ L2. We again have positive biases δ1 and δ2 such that Pr[N1 accepts α] = 1
2 + δ1 and

Pr[N2 accepts α] = 1
2 + δ2. But then

Pr[N accepts α] = Pr[N1 accepts α]× Pr[N2 rejects α] + Pr[N1 rejects α]× Pr[N2 accepts α]

=

(
1

2
+ δ1

)(
1

2
− δ2

)
+

(
1

2
− δ1

)(
1

2
+ δ2

)
=

1

2
− 2δ1δ2 <

1

2
.

Similarly, N accepts α ∈ L1 ∩ L2 with probability < 1
2 .

To sum up, N decides L1 4L2 in probabilistic polynomial time.

8. Since the reduction from MAJSAT to THRESHOLD-SAT is obvious (convert 〈φ〉 to 〈φ, 2m−1〉, where m
is the number of variables in φ), it suffices to show that THRESHOLD-SAT ∈ PP. Consider the following
algorithm N :

Input: 〈φ, k〉, where φ is a Boolean formula and k ∈ N0.

Stages:
1. Compute the number m of variables in φ.
2. If k > 2m, reject.
3. Make a coin toss.
4. If the toss outcome is ‘Head’
5. Evaluate φ at a (uniformly) random truth assignment of the variables.
6. If the evaluation result is 1, accept, else reject.
7. else
8. Make m coin tosses and treat the toss outcomes as an m-bit number t, 0 6 t < 2m.
9. If 0 6 t < k, reject, else accept.

I now establish that the above algorithm N decides THRESHOLD-SAT in PP. First assume that φ has
more than k satisfying truth assignments. Then Pr[N accepts 〈φ, k〉] > 1

2 × k
2m + 1

2 × (2m−k
2m) = 1

2 . On the
other hand, if φ has 6 k satisfying truth assignments Pr[N accepts 〈φ, k〉] 6 1

2 × k
2m + 1

2 × (2m−k
2m) = 1

2 .
It follows that THRESHOLD-SAT ∈ PP′ = PP.

9. Clearly, NAND-CIRCUIT-VALUE is in P. In order to show its P-hardness I reduce CIRCUIT-VALUE
to NAND-CIRCUIT-VALUE (in log-space). Let 〈C,α〉 be an instance for CIRCUIT-VALUE. I want to
build a NAND circuit C ′ such that C ′(α′) = 1 if and only if C(α) = 1, where α′ := α1. To that end I
convert each gate g of C to an equivalent circuit consisting of NAND gates only. Note that the constant bit
1 is available in α′.
[g is a NOT gate] Let x be the input of g. Then its output is x = x ∨ 0 = x ∨ 1 = x ∧ 1.
[g is an AND gate] With inputs x and y the gate g computes x ∧ y = x ∧ y = (x ∧ y) ∧ 1.
[g is an OR gate] Let the inputs of g be x and y. Then its output is x ∨ y = x ∧ y = (x ∧ 1) ∧ (y ∧ 1).
With these replacements the number of gates in C ′ becomes at most three times that in C, whereas the depth
of C ′ is at most twice that of C. But these figures are not much relevant in this context. It is necessary to
argue that a log-space transducer can convert 〈C,α〉 to 〈C ′, α′〉. But this is evident from the fact that while
converting each gate g of C to a NAND circuit, it suffices to store only the pointers to the inputs to g (input
variables or outputs of other gates in C) and to the output of g. These pointers occupy space logarithmic in
the size of 〈C,α〉.

10. For a one-way function f (not necessarily bijective) we have proved that the language

Lf := {〈x, y〉 | f(z) = y for some z 6 x}

is in UP \ P. Since UP ⊆ NP, we have Lf ∈ NP \ P. What remains is to prove that if f is bijective, then
Lf ∈ coNP, i.e., Lf ∈ NP. The bijectivity of f implies that f−1(y) exists for all y, i.e.,

Lf = {〈x, y〉 | f−1(y) > x}.

Since f is a one-way function, it suffices to search over all candidates z with |y|1/k 6 |z| 6 |y|k for some
constant k and accept if and only if one such z corresponds to both f(z) = y and z > x. Clearly, this can
be achieved in non-deterministic polynomial time. In fact, (since f is injective), we have proved a stronger
result, namely, Lf ∈ (UP ∩ coUP) \ P.

Dr. Abhijit Das, Dept. of Computer Science & Engg, Indian Institute of Technology, Kharagpur 721 302

