Class Test II, Autumn 2003-04

Solutions

- 1. We have HALFCYCLE = $L_1 \setminus L_2$, where $L_1 := \{\langle G \rangle \mid \text{The digraph } G \text{ has a cycle of length} \ge \lfloor n(G)/2 \rfloor\}$ and $L_2 := \{\langle G \rangle \mid \text{The digraph } G \text{ has a cycle of length } > \lfloor n(G)/2 \rfloor\}$. Each of L_1 and L_2 is in NP, since an explicitly given sufficiently big cycle in G is a succinct certificate for the membership of $\langle G \rangle$ in the language. Thus HALFCYCLE \in DP.
- **2.** $\Delta_1 \mathbf{P} = \mathbf{P}^{\Sigma_0 \mathbf{P}} = \mathbf{P}^{\mathbf{P}} = \mathbf{P}$.

Taking $L_2 = \emptyset$ in the (first) definition of DP shows that NP \subseteq DP. Moreover, taking $L_1 = \Sigma^*$ in this definition indicates that $coNP \subseteq DP$. Thus NP $\cup coNP \subseteq DP$.

Finally, let $L \in DP$. $L = L_1 \setminus L_2$ for some $L_1, L_2 \in NP$. There exist poly-time reductions f_1 and f_2 from L_1 and L_2 to SAT. For an instance α for L, we ask the SAT oracle about $f_1(\alpha)$ and $f_2(\alpha)$ and accept if and only the first call returns 'yes' and the second 'no'. We conclude that $DP \subseteq P^{SAT} = P^{NP} = P^{\Sigma_1 P} = \Delta_2 P$.

3. [if] NP = coNP implies that NP is closed under complementation. We also know that NP is closed under intersection. Since L₁ \ L₂ = L₁ ∩ L
₂, it then follows that DP = NP = coNP = NP ∪ coNP.
 [only if] I start by proving two auxiliary results:

Claim: HAMCYCLE \leq_P HALFCYCLE.

Let $\langle G \rangle$ be an instance for HAMCYCLE with m := n(G). Call G' to be the digraph obtained by adding to G exactly m isolated vertices. It is clear that the longest cycle in G' is of length $m = \lfloor n(G')/2 \rfloor$, if and only if G contains a Hamiltonian cycle.

Claim: $\overline{\text{HAMCYCLE}} \leq_P \text{HALFCYCLE}$.

Let $\langle G \rangle$ be an instance for HAMCYCLE with m := n(G). Add m - 1 new vertices to G and m - 1 new edges, so that the new vertices form a directed cycle. Call the resulting graph G''. We have n(G'') = 2m - 1 and so the longest cycle in G'' is of length $m - 1 = \lfloor n(G'')/2 \rfloor$, if and only if G does *not* contain a Hamiltonian cycle.

Now assume that $DP = NP \cup coNP$. By Exercise 1 HALFCYCLE is either in NP or coNP. First consider that HALFCYCLE \in NP. By the second claim HALFCYCLE is coNP-hard. But we already know that if a coNP-hard language is in NP, then NP = coNP. So finally consider the case that HALFCYCLE \in coNP. By the first claim HALFCYCLE is NP-hard. Thus again we have NP = coNP.