
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 6 : Parallel computation

That certain problems are solvable in polynomial time does not seem to satisfy us. Obviously, a useful
problem should consult its entire input, leading to a linear lower time bound. We would still like to solve
problems in sub-linear time, of course, not using conventional computers, but using parallel versions of
them. A parallel computer can process different instructions or operations (including reading the input)
simultaneously and may bring down the (parallel) running time of a problem to sub-linear, say poly-log.
Informally, a problem which has some such algorithms is called massively parallelizable, whereas a
problem which parallelization is not known to help much is called inherently sequential. This chapter is
an introduction to the theory of classification of problems based on their parallelizability potentials.

6.1 Boolean circuits

To start with we require a good model of parallel computers. A parallel random access machine (P R A M)
is typically the most widely used model. A PRAM has many simple processors communicating through a
shared memory. For our purpose, however, these machines are too complicated to deal with mathematically.
So we stick to another model known as Boolean circuits and built of logic gates. Most modern processors
have CPUs consisting of a vast number of such gates and so our model is not unrealistic. But programming
at the gate level is clumsy. Let us accept this drawback of Boolean circuits to promote simpler reasoning.

B o o l e a n c i r c u i t s have AND, OR and NOT gates (capable of computing Boolean AND, OR and NOT
functions of individual bits) connected by wires and having no loops (feedbacks). Input bits are given from
an external source. Gates receiving these bits compute the desired outputs and pass the computed bit values
on to the next level of gates. Eventually, computation ends at a specific output gate. The bit value computed
by this output gate is designated as the value computed by the circuit on the given input.

6.1 Example Figure 6.1 describes the computation of the three-bit parity function by a Boolean circuit. The
figure also describes the propagation of the bit values through the gates for the input setting x1x2x3 = 010.

A Boolean circuit C on n inputs x1, . . . , xn computes a function fC : {0, 1}n → {0, 1} in the sense that
if C outputs the bit value b for the input setting a1, . . . , an, we say fC(a1, . . . , an) = b. We may often go
lazier to say the same as C(a1, . . . , an) = b. We also conceive of Boolean circuits computing functions
{0, 1}n → {0, 1}k using k output gates.

We now want to employ Boolean circuits to recognize languages. A language may have strings of any
length, whereas a particular Boolean circuit has a fixed number of input variables. So we use a family
(C0, C1, C2, . . .) of Boolean circuits, where for each n the circuit Cn has provision for exactly n input bits.
The family recognizes the language L in the sense that α ∈ L if and only if Cn(α) = 1, where n = |α| and
where the bits of α are naturally treated as the settings of the input variables of Cn.6.1

6.2 Definition The s i z e of a Boolean circuit C is the number of gates in it. The d e p t h of C is the
maximum number of gates in a path from an input variable to the output. Two circuits C and C ′ on the
same input variables are called e q u i v a l e n t , if they compute the same function, i.e., output the same bit
values for the same input settings. C is called s i z e m i n i m a l (resp. d e p t h m i n i m a l), if no circuit of
smaller size (resp. depth) is equivalent to it. The s i z e c o m p l e x i t y (resp. d e p t h c o m p l e x i t y) of a

6.1Every language can be encoded in binary. Unless otherwise stated, we assume throughout this chapter that all languages are
subsets of {0, 1}∗. Binary encoding changes the length of a string over an arbitrary alphabet only by a constant factor and so does
not affect complexity results.

Page 2 of 6 17642 Computational Complexity

Figure 6.1: A Boolean circuit computing the three-bit parity function

x x x
1 2 3

Output

Inputs

0

0

1

11

1

00

0

1

1 100

0 1

1

circuit family (C0, C1, C2, . . .) is the function f : N0 → N0 such that f(n) is the size (resp. depth) of Cn.
The family is called s i z e m i n i m a l (resp. d e p t h m i n i m a l), if each Cn is size minimal (resp. depth
minimal). The c i r c u i t s i z e c o m p l e x i t y (resp. c i r c u i t d e p t h c o m p l e x i t y) of a language
L ⊆ {0, 1}∗ is the size complexity (resp. depth complexity) of a size minimal (resp. depth minimal) circuit
family that realizes L.

6.3 Example As a continuation of the Example 6.1 let us realize a circuit family for the language

PARITY := {α ∈ {0, 1}∗ | The number of 1 bits in α is odd}.

Figure 6.1 describes how two NOT gates, two AND gates and one OR gate can be used to build the two-bit
parity or the XOR function. We denote this circuit by an XOR gate ⊕. Using n − 1 such XOR gates one
can realize the n-bit parity circuit Cn as described in Figure 6.2. This circuit Cn has n− 1 XOR gates, i.e.,
5(n − 1) basic (AND, OR, and NOT) gates, and so its size is O(n). Its depth is also O(n) — the longest
path is from x1 to output. Thus the size complexity of PARITY is O(n) and its depth complexity is also
O(n). But these circuits for PARITY are not depth minimal. One can, in fact, construct a height-balanced
binary tree on n leaves. Such a tree can also realize the n-bit parity function (with the inputs at the leaves
and the output at the root), but with a depth of only O(lg n). A realization of the eight-bit parity function
with logarithmic depth is shown in Figure 6.3. It follows that PARITY has a minimal depth complexity
O(lg n). It is also clear that this height-balanced circuit family continues to have a size complexity of O(n).

Though circuit families handle individual languages, we are still not happy to take any arbitrary family as a
representative of a language. The reason is that a typical computer program should have a generic way to
handle inputs of different lengths. One simply should not stand an infinitely long program with branching
for all possible values of n ∈ N0. In other words, the different circuits Cn in a family must have a uniform
description independent of n. Moreover, this description should make it easy to manufacture the circuit Cn,
after n is obtained from the input. We require this manufacturing doable by an algorithm.

6.4 Definition A circuit family (C0, C1, C2, . . .) is called u n i f o r m , if a log-space transducer exists, that
terminates with 〈Cn〉 on its work-tape, when started with 1n as input (on its read-only input tape).

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 6: Parallel computation Page 3 of 6

Figure 6.2: A Boolean circuit computing the n-bit parity function

x x
1 2 3

x xn

Figure 6.3: A Boolean circuit computing the 8-bit parity function

x x x x x x xx
1 2 3 4 5 6 7 8

A uniform Boolean circuit family is henceforth treated as a model of a parallel computer for the language
it recognizes. The size complexity of the family is a measure on the total number of elementary operations
needed by the algorithm, whereas the depth complexity of the family reflects the parallel running time of the
algorithm. This formalism is a departure from our previous efforts of modifying the basic Turing machine
model to suit our different specific needs. However, as long as we confine ourselves inside the complexity
class P, this deviation is not a serious issue, as the following theorem indicates.

6.5 Theorem A language L ∈ TIME(f(n)) with f(n) > n has a circuit size complexity of O(f2(n)).

Circuits may play an important role in settling the P = NP? issue. A Boolean circuit is called sa t i s f i ab le ,
if some setting of the input variables leads C to output 1. It can be proved independently that the language

CIRCUIT-SAT := {〈C〉 | C is a satisfiable Boolean circuit}

is NP-complete. As a corollary to this result, one obtains an alternate proof of the Cook-Levin theorem (the
NP-completeness of SAT and 3SAT). These developments are not surprising, since our real computers are
typically built from Boolean circuits and so circuits provide a significantly similar (to TMs) way to look at
computation. We will not study these topics further in this course, but come back to parallelization issues.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 4 of 6 17642 Computational Complexity

6.6 Definition A language L is said to have a (simultaneous) s i ze -dep th complex i ty of (f(n), g(n)),
if a uniform circuit family with size complexity f(n) and depth complexity g(n) realizes L.

By Example 6.3 the language PARITY has a size-depth complexity of (O(n),O(lg n)). Thus PARITY is
highly parallelizable in the sense that its parallel running time is logarithmic in the input size.

6.7 Example A circuit family can also compute a function instead of recognizing languages. LetA = (aij)
andB = (bjk) be twom×m Boolean matrices. Their product is defined to be them×mmatrix C = (cik),
where cik =

∨m
j=1(aij ∧ bjk). The input size is n = 2m2. A circuit may first compute all the quantities

dijk := aij ∧ bjk in parallel using m3 OR gates in only one unit of parallel running time. Then for each
pair (i, k) of indices in parallel, the circuit computes the m-ary OR cik =

∨m
j=1 dijk. Like the m-ary XOR,

the computation of each cik can be achieved using O(m) size and O(lgm) depth. Thus Boolean matrix
multiplication has a size-depth complexity of (O(n3/2),O(lgn)).

6.8 Example Let again A = (aij) be an m×m Boolean matrix. The t r a n s i t i v e c l o s u r e of A is the
Boolean matrix B := A ∨ A2 ∨ · · · ∨ Am, where OR of two matrices means elementwise Boolean OR. By
the previous example we know how to multiply twom×mmatrices in parallel — call this circuitMm. Now
consider a circuit that computes for each i ∈ {1, 2, . . . ,m} in parallel the matrix Ai using O(i) invocations
of Mm and in O(log i) depth of these invocations. Since Mm has a complexity of (O(m3),O(lgm)),
computation of all of A,A2, . . . , Am can be achieved in O(m5) size and O(lg2m) depth. Next we have
to logically OR the matrices. We run for each pair (i, j) of indices in parallel a circuit that computes the
m-ary OR of the (i, j)-th elements of the intermediate products A,A2, . . . , Am. Each sub-circuit for (i, j)
requires O(m) size and O(logm) depth, yielding a total size of O(m3) and depth of O(logm) for this OR
stage. Combining the multiplication and OR stages implies that the computation of the transitive closure
has a size-depth complexity of (O(n5/2),O(lg2 n)).

Note that if A is the adjacency matrix of a directed graph G and B the transitive closure of A, then bij = 1
if and only if there is a path from vertex i to vertex j in G.

6.2 Nick’s complexity classes

So far we have seen many examples of parallel computations in O(ni) size and O(lgj n) depth. We give a
special name to such computations.

6.9 Definition A language L is said to be in the class NCj , if a uniform Boolean circuit family of size-
depth complexity (O(ni),O(lgj n)) realizes L. Here the choice of i is left arbitrary and the j in NCj refers
to the exponent in the depth complexity. We also define

NC :=
⋃

j∈N
NCj .

NC is an abbreviation for N i c k ’ s c o m p l e x i t y c l a s s . Nicholas Pippenger was the first to study
these classes. Languages in NC are highly parallelizable. NC1 ⊆ NC2 ⊆ NC3 ⊆ · · · form a hierarchy
of languages with union equal to NC. For L ∈ NC a sequential simulation of an NC circuit for L can be
evidently done in polynomial time. We can also prove relations of NC classes with the log-space classes.

6.10 Theorem NC ⊆ P.

6.11 Theorem NC1 ⊆ L ⊆ NL ⊆ NC2.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 6: Parallel computation Page 5 of 6

6.3 P-completeness

We have NC ⊆ P. But are these two classes equal? The answer is not known. NC = P implies that
every poly-time solvable problem is massively parallelizable. This is a bit surprising, since many problems
appear to be inherently sequential. With our usual attempt of separating NC from P we define P-complete
problems. Doing that requires the closure of the class NC under log-space reduction.

6.12 Theorem Let A 6L B and B ∈ NC. Then A ∈ NC too.

Proof Let f be a log-space reduction from A to B. For an input instance α = a1 . . . an of A we first
compute the string f(α) = b1 . . . bl for B. Since f is a log-space reduction, the language that contains
〈α, j〉 if and only if bj = 1 is in L and so in NL and so in NC2. Thus we can compute all the bits b1, . . . , bl
of f(α) in parallel using NC2 circuits. We finally feed the bits b1, . . . , bl to an NC circuit for B. J

6.13 Corollary Let A 6L B and B ∈ NCj for j > 2. Then A ∈ NCj too.

6.14 Definition A language L is called P-complete, if it satisfies the following two conditions:

(1) L ∈ P.

(2) A 6L L for every A ∈ P.

6.15 Corollary If a P-complete problem is in NC, then NC = P.

6.16 Example The following languages are P-complete:

CIRCUIT-VALUE := {〈C,α〉 | C is a Boolean circuit and C(α) = 1}.
ODD-MAX-FLOW := {〈G, s, t, c〉 | The maximum flow from s to t in the network G is odd}.

In the second example c stands for the capacity matrix for G and consists of positive integral entries.

6.4 Randomized parallel classes

Many interesting problems have been identified as P-complete.6.2 With the reasonable belief that these
problems cannot be effectively parallelized, it is noteworthy to look at their approximate and/or heuristic
parallel versions. Randomization also helps here. Like the passage from P to RP we define a randomized
version of the class NC. Certain problems that do not have known good deterministic parallel algorithms
can now be parallelized using randomization. Some probability of error, that can be made vanishingly small,
is all the price we have to pay.

6.17 Definition A language L is said to be in the class R N C if there is a uniform family (C0, C1, C2, . . .)
of Boolean circuits with the following properties: The circuit Cn that is meant for input strings α of length
n takes as input a string αβ with |α| = n and |β| = p(n), where p(n) is some fixed polynomial function
of n. The string β supplies the random bits needed for the computation of Cn. If α ∈ L, at least half of

6.2For a good collection look at the book ‘Limits to parallel computation: P-completeness theory’ by Greenlaw, Hoover and
Ruzzo, Oxford University Press, 1995. The book is available for free download from the following web-sites:

http://www.cs.armstrong.edu/greenlaw/research/PARALLEL/
http://www.cs.ualberta.ca/∼hoover/P-complete/
http://www.cs.washington.edu/homes/ruzzo/

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 6 of 6 17642 Computational Complexity

the 2p(n) possible settings for β lead the circuit Cn to output 1, whereas if α /∈ L, no setting for β lets the
circuit output 1.

The RP algorithm for SYMBOLIC-DET, that we described in Chapter 5, can be implemented by an NC
circuit family. So SYMBOLIC-DET ∈ RNC.

The following figure explains the relations among the parallel complexity classes introduced in this chapter.
All containments are conjectured to be proper.

Figure 6.4: Parallel complexity classes

NC

NC 1 NC 2 NC 3

P

P−completeRNC

Exercises for Chapter 6

1. Show that the 2-bit parity function can be realized using only four basic (AND, OR and NOT) gates, but cannot be
realized by only three basic gates.

2. Show that if NCj+1 = NCj for some j > 1, then NC = NCj .

* 3. A Boolean circuit is called m o n o t o n e , if it does not contain NOT gates. Use reduction from CIRCUIT-VALUE
to show that the language

MONOTONE-CIRCUIT-VALUE := {〈C,α〉 | C is a monotone Boolean circuit and C(α) = 1}

is P-complete.

4. In the text we have considered OR and AND gates receiving only two input bits. Now think of OR and AND gates
that can take any number of inputs and compute the logical OR or AND of all the input bits in one unit of time. Such
gates are said to have unbounded fan-in. Define the complexity class ACj , j > 0, to comprise those languages that
have uniform families of Boolean circuits built from gates of unbounded fan-in and having size-depth complexity
(O(ni),O(lgj n)). Also define AC :=

⋃
j∈N0

ACj . Prove the following assertions:

(a) ACj ⊆ NCj+1 ⊆ ACj+1 for every j > 0.
(b) AC = NC.
(c) If ACj+1 = ACj for some j > 0, then AC = ACj .

* 5. [Binary addition] Design an AC0 circuit that, given x0, . . . , xn−1, y0, . . . , yn−1 as input, computes the bits z0, . . . , zn,
where (znzn−1 . . . z1z0)2 = (xn−1 . . . x1x0)2 + (yn−1 . . . y1y0)2. In particular, binary addition is in NC1. (Hint:
Compute all the carries in parallel using an AC0 circuit.)

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

