
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 5 : Randomized computation

Probabilistic or randomized computation often provides practical methods to solve certain computational
problems. In order to define probabilistic complexity classes we augment Turing machines with an
added capability, namely that of flipping (unbiased) coins. Based on the outcome of each coin toss, the
machine makes one of two allowed next moves. In this sense randomization proposes a way to implement
nondeterminism.

It is not immediate at the outset how such nondeterministic choices based on coin tosses could help speeding
up computations. Think of a probabilistic algorithm for a language L ∈ NP, for which many random
certificates are available. If α ∈ L, trying a few random candidates may eventually lead to the finding
of a certificate for α. On the other hand, if α 6∈ NP, no random choices would lead to the discovery
of a certificate. However, if we took a definite deterministic order of investigating certificates, we might
end up generating a huge (exponential) number of certificates. This partially explains situations in which
randomization may help.

5.1 Randomized complexity classes

5.1 Definition A p r o b a b i l i s t i c T u r i n g m a c h i n e is a nondeterministic Turing machine with
the property that for every (non-halting) configuration of the machine, there exist exactly two possible next
moves. We assign a probability of 1/2k for a branch of computation which makes exactly k nondeterministic
moves. The probability that the machine accepts an input string α is the sum of the probabilities of
all accepting branches on this input, whereas the probability that the machine rejects is the sum of the
probabilities of all rejecting branches. It is easy to see that these two probabilities sum up to 1. If
the probabilistic Turing machine runs in time polynomially bounded by the input size (in the sense of a
nondeterministic computation), we call the machine a p r o b a b i l i s t i c p o l y n o m i a l - t i m e T u r i n g
m a c h i n e or a P P T for short.

Note that forcing exactly two choices in each non-halting state is not a loss of generality. If an NTM N
makes only one choice from some configuration, we can replace that transition by two identical transitions.
If N makes t possible choices for some t > 2, we can replace this nondeterministic transition by a series of
two-way transitions each of which guesses a bit of the choice number.

This formalism prescribes a way to implement nondeterminism — replace a nondeterministic move by a
deterministic move based on the outcome of a coin toss. However, we may be unlucky to meet a bad
sequence of coin tosses so as to arrive at an erroneous decision. Let L be a language having a probabilistic
algorithmN . If α ∈ L, we may end up in a rejecting branch and incorrectly conclude that α /∈ L. Moreover,
if α /∈ L, there may be some accepting branches and an unlucky sequence of tosses may reveal such an
accepting branch. For N to be useful in practice, it should run in poly-time (i.e., it should be a PPT) and the
error probabilities should be small. Suppose that for 0 6 ε1, ε2 6 1/2 we have:

if α ∈ L, then Pr(N accepts α) > 1− ε1, and
if α /∈ L, then Pr(N rejects α) > 1− ε2,

where these two probabilities are defined as in Definition 5.1. In this case we say that N decides L with an
error probability of ε1, ε2. The error probabilities ε1, ε2 may be a function of the input length n, say 2−n. In
this case N accepts L with an exponentially small probability of error. For the time being, let us concentrate
on some constant values of ε1, ε2 and define some useful randomized complexity classes. We later see how
we can use these classes to obtain probabilistic poly-time algorithms with an exponentially small probability
of error. Table 5.1 summarizes these classes and the corresponding values for ε1, ε2.

Page 2 of 10 17642 Computational Complexity

Table 5.1: Randomized complexity classes

Class ε1 ε2
RP 6 1/2 0

coRP 0 6 1/2
ZPP 0 0
PP < 1/2 < 1/2

BPP 6 1/3 6 1/3

5.2 Definition (1) [R a n d o m i z e d p o l y n o m i a l t i m e (R P)]

We say that L ∈ RP, if and only if there exists a PPT N such that

if α ∈ L, then Pr(N accepts α) > 1/2, and
if α /∈ L, then Pr(N rejects α) = 1.

(2) [c o R P]

Define coRP := {L | L̄ ∈ RP}. In other words, L ∈ coRP, if and only if there exists a PPT N such that

if α ∈ L, then Pr(N accepts α) = 1, and
if α /∈ L, then Pr(N rejects α) > 1/2.

(3) [Z e r o p r o b a b i l i t y p o l y n o m i a l t i m e (Z P P)]

ZPP := RP ∩ coRP.

(4) [P r o b a b i l i s t i c p o l y n o m i a l t i m e (P P)]

We say that L ∈ PP, if and only if there exists a PPT N such that

if α ∈ L, then Pr(N accepts α) > 1/2, and
if α /∈ L, then Pr(N rejects α) > 1/2.

We say that PP accepts and rejects by majority.

(5) [B o u n d e d p r o b a b i l i t y p o l y n o m i a l t i m e (B P P)]

We say that L ∈ BPP, if and only if there exists a PPT N such that

if α ∈ L, then Pr(N accepts α) > 2/3, and
if α /∈ L, then Pr(N rejects α) > 2/3.

We say that BPP accepts and rejects by clear majority.

RP and coRP algorithms have one-sided probability of error and are often called M o n t e C a r l o
a l g o r i t h m s . Let L be a language decided by a randomized poly-time algorithm N . Suppose that we
run N t times on some input α of length n. Assume also that the runs are independent in the sense that each
coin tossN makes is modeled by an independent random variable. If α /∈ L, the machine rejects in each run.
However, if α ∈ L,N can still reject on every occasion, but this time with a probability6 (1−1/2)t = 1/2t.
Making t sufficiently large we can make this probability vanishingly small. For example, taking t = 100
gives an error probability of 1/2100 which is arguably much smaller than the probability of a hardware failure
or even that of a meteorite hitting the computer during its computation, although theoretically, no finite value
of t, however large, can give us 100% confidence about the correctness of the machine’s decision.

If t is a polynomial p(n) of the input size n, the error probability is exponentially small, namely 2−p(n).
Moreover, p(n) runs of N on α does not alter the polynomial nature of the running time (though the degree
of the polynomial increases). In other words, in the definition of RP we may take ε1 to be any constant
strictly between 0 and 1.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 5: Randomized computation Page 3 of 10

A language L ∈ ZPP = RP ∩ coRP has two (poly-time) Monte Carlo algorithms: N that never errs when
α /∈ L and N̄ that never errs when α ∈ L. We run the two algorithms repeatedly in parallel. If N accepts
α, we know for sure that α ∈ L. (N is bound to reject any string outside α.) On the other hand, if N̄ rejects
α, it is certain that α /∈ L. However, if N rejects and N̄ accepts, we can’t definitely conclude about the
membership of α in L, and this event happens with a probability 6 1/2.

We continue the parallel simulation, until we arrive at the definitely correct answer. We may be so unlucky as
to have rejection by N and acceptance by N̄ for a huge (say, exponential) number of times. The probability
that this happens for t runs is6 1/2t which decreases exponentially with t. Thus we expect to get the correct
answer after a few (a constant number of) runs ofN and N̄ . In other words, the parallel simulation halts with
the correct answer in expected polynomial time. Such algorithms are called L a s V e g a s a l g o r i t h m s .

One may also view a Las Vegas algorithm for L as one that provides three possible answers: ‘accept’,
‘reject’ and ‘don’t know’. It never accepts a string outside L and never rejects one inside L. A ‘don’t know’
output comes with a probability 6 1/2.

The classes PP and BPP correspond to two-sided error probabilities. These algorithms can still be
effectively exploited in the following sense. Repeat an algorithm N for a language L in PP or BPP some
number of times and take a decision ‘by majority’, i.e., if more runs accept than reject, then accept the input,
whereas if more runs reject, reject the input. We are now obviously interested in assessing the merit of this
decision. The following useful lemma allows us to do that.

5.3 Lemma [T h e C h e r n o f f b o u n d] Let X1, . . . , Xt be independent binary random variables, such
that for each i we have Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p. The variable X := X1 + · · · + Xt has
expected value µ := pt. For any 0 6 θ 6 1 we have

Pr[X − µ 6 −θµ] 6 e−θ
2µ/3, and

Pr[X − µ > θµ] 6 e−θ
2µ/3.

Figure 5.1 shows the distribution forX . The shaded “tail” regions correspond to the the Chernoff probability
bounds. Note that X is a discrete random variable. The drawing should not confuse you.

Figure 5.1: Explaining the Chernoff bounds

Now consider a PP or BPP algorithm N executed t times on an input α. Take Xi to be the variable that
takes the value 1 if N gives the correct output during the i-th run, and that takes the value 0 if N gives
the incorrect output. The probability of getting the correct output in each run is p = 1/2 + δ for some
δ > 0. Our decision by majority will be incorrect, if more individual decisions of N are incorrect, i.e., if
X =

∑t
i=1Xi 6 t/2, i.e., if X − µ 6 t/2− µ =

(
1
2p − 1

)
µ = − δ

pµ. Thus taking θ = δ/p in Chernoff’s

first bound implies that the probability of error is 6 e
− δ

2µ

3p2 = e
− δ

2pt

3p2 6 e−δ
2t/3 with the last inequality

following from the fact that p 6 1.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 4 of 10 17642 Computational Complexity

For BPP δ > (2/3− 1/2) = 1/6 and so the last probability becomes 6 e−t/108, which is an exponentially
small expression in the number t of trials. The conclusion holds, even if the constant 2/3 in the definition
of BPP is replaced by any other constant greater than (i.e., bounded away from) 1/2.

With PP, however, the situation may be significantly different. We may have δ = 2−p(n) for some
polynomial p(n) of the input size n. Such a choice for δ is perfectly consistent with the definition of

PP. Now the probability of error for t trials becomes 6 e
− t/3

2p(n) . But then we require an exponential
(in n) number t of trials in order to make this error probability sufficiently small, i.e., we have to run
N an exponential number of times in order to gain a desired level of confidence about the correctness of
the decision by majority. This is not surprising, since the decision by majority becomes effective, only
when there is a marked bias for correct decisions compared to incorrect decisions. The bias 2−p(n), though
positive, is too ineffective. BPP overcomes this difficulty by demanding the bias δ to be bounded away
from 0, as mentioned earlier.

5.2 Relation among the randomized classes

Let us now investigate the relationships among the randomized complexity classes. Figure 5.2 describes
these relations, some which are provable, others conjectured.

Figure 5.2: Relation among randomized complexity classes

coNPNP

BPP
PP

ZPP

P
coRPRP

First note that P sits inside every randomized class of Definition 5.2, because a poly-time deterministic
algorithm may make coin tosses and ignore the outcomes of these tosses, i.e., spawn identical branches
irrespective of the toss outcomes.

5.4 Proposition RP ⊆ NP and so coRP ⊆ coNP.

Proof Consider the computation tree on an input α of a randomized poly-time algorithm N for some
L ∈ RP. If α ∈ L, at least half (and so at least one) of the branches are accepting. So N accepts α as an
NTM. Conversely, if α /∈ L, the computation tree has no accepting branches, i.e., N rejects L as an NTM.
Thus L ∈ NP too. J

It is not known if the classes RP and coRP are equal. They are conjectured to be unequal. Their intersection
is precisely the class ZPP which evidently contains P. Whether or not ZPP = P is another unknown
question. Some researchers believe that P and ZPP are equal, though there does not seem to be an
overwhelming evidence in favor of this conjecture.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 5: Randomized computation Page 5 of 10

Now let us look at two-sided randomized classes. Running an RP or coRP algorithm twice reduces the
error probability to 1/4 < 1/3 implying that

RP ⊆ BPP, and coRP ⊆ BPP.

Also by definition

BPP ⊆ PP.

In view of the symmetry in the definitions, BPP and PP are closed under complementation, i.e.,

coBPP = BPP and coPP = PP.

The exact relation of BPP with NP is not known. It can, however, be shown that

BPP ⊆ Σ2P and so BPP ⊆ Σ2P ∩Π2P

(BPP is closed under complementation).

5.5 Proposition NP ⊆ PP.

Proof Let L ∈ NP and N an NTM that decides L in polynomial time. Without loss of generality we may
assume that N is a PPT. I convert N to a PPT N ′ that accepts and rejects L by majority. Assume that N ’s
running time is bounded by the polynomial p(n), i.e., every branch of N ’s computation has a probability
> 2−p(n). At start-up N ′ makes a coin toss. If the toss outcome is ‘head’, N ′ simulates N on the input α
with nondeterministic moves of N replaced by probabilistic moves obtained from a fresh sequence of coin
tosses. If the first toss (immediately after start) gives a ‘tail’, N ′ makes p(n) + 1 further coin tosses. If all
these p(n) + 1 tosses give ‘head’, N ′ rejects, else it accepts.

Assume that α ∈ L. Then N has at least one accepting branch. This branch has length l 6 p(n). But then
the computation tree for N ′ has one accepting branch of length l + 1 6 p(n) + 1 via the topmost ‘head’. It
also has 2p(n)+1− 1 accepting branches under the topmost ‘tail’. Thus the probability of acceptance of α by
N ′ is at least 1

2l+1 +
(

1
2 − 1

2p(n)+2

)
> 1

2 , since l + 1 < p(n) + 2. Thus N ′ accepts by majority.

Now assume that α /∈ L. Then each branch of computation of N is rejecting, yielding a total probability of
1/2 under the topmost ‘head’. In addition, we have exactly one rejecting branch under the topmost ‘tail’.
Thus the probability that N ′ rejects α is 1

2 + 1
2p(n)+2 >

1
2 , i.e., N ′ rejects by majority too. J

The classes RP and BPP are not known to have complete problems. PP, however, possesses complete
problem (under poly-time reductions). For example, the language

MAJSAT:={〈φ〉 | φ is a Boolean formula on m variables and with > 2m−1 + 1 satisfying assignments}

is P P - c o m p l e t e . MAJSAT comprises those satisfiable formulas that have more than half (i.e., the
majority) of the assignments satisfying.

5.3 Examples

Symbolic determinants

The determinant of an n × n matrix A = (ai,j) is defined as detA :=
∑
π

[
σ(π)

∏n
i=1 ai,π(i)

]
, where

the sum runs over all permutations π of {1, 2, . . . , n}, and where σ(π) denotes the sign of the permutation
π (1 or −1 depending on whether π is even or odd, i.e., on whether π can be written as a product of an
even or an odd number of transpositions). When the elements of A are integers, one typically uses Gaussian
elimination (a sequence of elementary row operations) to reduce the matrix to an upper-triangular form. The

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 6 of 10 17642 Computational Complexity

determinant is then the product of the diagonal elements of the reduced matrix. Though the final answer (the
determinant) is an integer, the computation involves rational arithmetic. It can be shown that the intermediate
rational integers that show up in the computation are no bigger than polynomials in the input size.

Problems arise when the elements of the matrix A are multivariate polynomials (with integer coefficients).
Gaussian elimination requires arithmetic on rational functions, but the size of these intermediate rational
functions (and also the final result) may blow up to occupy a space exponential in the input size. But we
may restrict our attention only to the decision version whether the determinant identically vanishes (i.e., is
the zero polynomial). In other words, we concentrate on the language

SYMBOLIC-DET := {〈A〉 | A is a square matrix with polynomial entries and non-zero determinant}.

As discussed earlier, actually computing the determinant may take exponential space and time. In fact, no
deterministic poly-time algorithms are known for SYMBOLIC-DET. We will now provide a (poly-time)
Monte Carlo algorithm for this language. The algorithm is based on the following fact:

5.6 Lemma Let f(x1, . . . , xm) be a non-zero polynomial with degxi f 6 d for every i. For an integer
B ∈ N the number of roots of f in {0, 1, . . . , B − 1}m is 6 mdBd−1. Thus a randomly chosen tuple in
{0, 1, . . . , B−1}m is a root of f with probability6 mdBd−1/Bd = md/B. For B > 2md this probability
is 6 1/2.

Proof We go by induction on m. For m = 1 the result follows from the fact that a univariate polynomial
of degree d (and with integer coefficients) can have at most d roots. So assume m > 1 and the result holds
for m − 1 variables. Substituting some value k ∈ {0, 1, . . . , B − 1} for xk in f gives us a polynomial
φk(x1, . . . , xm−1) := f(x1, . . . , xm−1, k) in m − 1 variables and with the same degree bound d. Assume
that for s values of k the polynomial φk is identically zero and for the remaining B−s values of k this is not
zero. By induction the number of roots of f in the desired range is then6 sBm−1 +(B−s)(m−1)dBm−2.
But φk is identically zero, if and only if xm−k divides f(x1, . . . , xm) (an easy check), and the polynomials
xm − k are pairwise coprime for different values of k, that is, s 6 d. Also B − s 6 B. Therefore, the
desired number of roots of f is 6 dBm−1 +B(m− 1)dBm−2 = mdBm−1. J

This observation leads to the Algorithm 5.1. If detA is identically zero, then any choice for (a1, . . . , am)
leads detA′ to evaluate to 0. On the other hand, if detA is not identically zero, at least half of the choices
(a1, . . . , am) lead the algorithm to accept 〈A〉. It is also clear that the algorithm runs in poly-time of the
input size. Thus SYMBOLIC-DET ∈ RP.

Algorithm 5.1: A Monte Carlo algorithm for SYMBOLIC-DET

Input: 〈A〉, whereA is a square matrix whose entries are multivariate polynomials with integer
coefficients.

Stages:
1. Determine m and the degree bound d from A.
2. Take B := 2md.
3. Choose a random point (a1, a2, . . . , am) ∈ {0, 1, . . . , B − 1}m.
4. Substitute xi by ai in A for all i. Let A′ be the resulting matrix with integer entries.
5. Compute detA′ by Gaussian elimination.
6. If this determinant is 0, reject, else accept.

Primality testing

As a second example, let us look at the classical problem:

PRIME := {〈n〉 | n ∈ N is prime}.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 5: Randomized computation Page 7 of 10

Now we know that PRIME ∈ P. But the best know deterministic algorithm runs in time O(log7.5 n) and
is clearly impractical. Under Artin’s conjecture (an unproven mathematical fact) the running time reduces
to O(log6 n) which continues to remain quite big. However, using randomization one can solve PRIME in
time O(log3 n). Since even integers can be quickly recognized (from its binary or decimal representation),
we concentrate only on odd integers. The following is a well-known result from number theory:

5.7 Theorem [F e r m a t ’ s l i t t l e t h e o r e m] Let p be an odd prime and a an integer coprime to p. Then
ap−1 ≡ 1 (mod p).

Consider the Monte Carlo Algorithm 5.2. Stage 2 (computation of gcd(a, n)) could have been omitted,
since for a general n having no small prime divisors, the probability that a random a is not coprime to n is
overwhelmingly small.

Algorithm 5.2: A Monte Carlo algorithm for primality checking

Input: 〈n〉, where n is an odd positive integer.

Stages:
1. Pick a random a ∈ {1, . . . , n− 1}.
2. If a is not coprime to n, reject.
3. If ap−1 ≡ 1 (mod p), accept, else reject.

If n is indeed prime, then any a satisfies the congruence in Stage 3 and is accepted by the above algorithm.
For most composite integers n a randomly chosen a coprime to n satisfies this congruence with probability
at least 1/2. Thus this looks like a good coRP algorithm for PRIME.

Unfortunately, there exists a class of composite integers n, known as C a r m i c h a e l n u m b e r s , for
which the Fermat congruence holds for every a coprime to n. Though Carmichael numbers are not quite
common, there is an infinite number of them. Moreover, there are no efficient (poly-time) algorithms known
to recognize Carmichael numbers. Thus the above randomized algorithm is bound to fail for these numbers.

This problem is remedied by the following observation. An odd composite integer n has at least four square
roots of 1 modulo n, i.e., at least two others than the trivial square roots ±1). Thus we keep track of the
sequence how an−1 reaches 1 modulo n. If any non-trivial square-root is found on the way, n is definitely
known to be composite. Consider the modified Monte Carlo Algorithm 5.3, known as the M i l l e r - R a b i n
p r i m a l i t y t e s t .

Algorithm 5.3: Miller-Rabin primality proving algorithm

Input: 〈n〉, where n is an odd positive integer.

Stages:
1. Write n− 1 = 2st for some s, t ∈ N with t odd.
2. Pick a random a ∈ {0, 1, . . . , n− 1}.
3. If a is not coprime to n, reject.
4. Compute b0 ≡ at (mod n).
5. If b0 ≡ 1 (mod n), accept.
6. For i = 1, 2, . . . , s compute bi ≡ b2i−1 (mod n).
7. If bs 6≡ 1 (mod n), reject.
8. Let i be the smallest index for which bi ≡ 1 (mod n) and bi−1 6≡ 1 (mod n).
9. If bi−1 ≡ ±1 (mod n), accept, else reject.

Let me first explain what the algorithm does. Since n − 1 is even, we get positive values for s and t. It
then selects a random base a. As in the previous algorithm, the check if gcd(a, n) = 1 in Stage 3 could
be avoided. The algorithm then computes the numbers bi ≡ a2it (mod n) for i = 0, 1, . . . , s. At the end

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 8 of 10 17642 Computational Complexity

we have bs ≡ a2st ≡ an−1 (mod n). If we eventually do not reach bs 6≡ 1 (mod n), n is certainly not
prime by Fermat’s little theorem, so the algorithm rejects. Otherwise it finds out the smallest index i for
which bi ≡ 1 (mod n). If i = 0, i.e., bi is the first element in the sequence b0, b1, . . . , bs, then the algorithm
accepts. If 0 < i 6 s, then bi−1 is defined and is a square root of 1 modulo n. If this root is trivial (±1), the
algorithm accepts, else it rejects.

Modulo a prime 1 has only trivial square roots. Thus if n is a prime, we cannot locate non-trivial square
roots of 1. Moreover, by Fermat’s little theorem, we must obtain bs ≡ 1 (mod n). Thus the algorithm
definitely accepts n in this case.

Now assume that n is composite. If a passes the test (i.e., it gives an−1 ≡ 1 (mod n) without revealing
any non-trivial square root of 1), we say that n is a s t r o n g p s e u d o p r i m e to the base a. It can be
shown that there are at most 1/4-th of the bases (coprime to n) to which n is a strong pseudoprime. Thus
the probability that a random base a gives an−1 ≡ 1 (mod n) without divulging a non-trivial square root
of 1 in the computation is at least 3/4 (which is > 1/2). Thus Miller-Rabin test is a one-sided probabilistic
algorithm for PRIME. One can easily check that the algorithm runs in poly-time in the input size (log n).
Therefore, PRIME ∈ coRP and consequently COMPOSITE ∈ RP.

Other problems

There exists a huge lot of other problems (function and decision) that are known to be handled effectively
by randomization. Here we list a few. The details of these algorithms involve a pretty deal of mathematical
gadgets and are well beyond the scope of this small survey.

• Finding primitive roots: Given a prime p and the prime factorization of p − 1 determine a primitive
root modulo p (i.e., a generator for Z∗p.

• Square roots modulo a prime: Given a prime p and a quadratic residue a, compute an element b such
that b2 ≡ a (mod p).

• Irreducible polynomials over a finite field: Given a finite field Fq (such as Zp for a prime p) and a
positive integer d, compute an irreducible polynomial of degree d with coefficients from Fq.

• RSA key inversion: Given an RSA public-key (n, e) and the corresponding private key d, compute the
factorization of n.

• Incremental convex hull: Given the convex hull of a set of n points x1, . . . , xn in Rd and a new point
xn+1, compute the convex hull of x1, . . . , xn+1.

• The min-cut problem: Given an undirected graph G a cut is a partitioning of the vertex set V (G)
into two sets C and C̄. The cut is minimum if the number of edges joining C with C̄ is minimum.
Compute a minimum cut for G.

Randomization may also help reduce the running time from fully exponential to subexponential. Though
these algorithms do not necessarily come in the domain of PP, they are also worth studying. For example,
the best know algorithms for integer factorization and discrete logarithm problems are subexponential and
based on randomization techniques.

Satisfiability and randomization

Hmmm. . . Does randomization always help? Perhaps no! Let us investigate the question if SAT has a good
randomized algorithm. If a satisfiable formula has many satisfying assignments, we may hope to find one
such assignment soon from a sequence of randomly selected assignments (cf. MAJSAT). However, if the

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 5: Randomized computation Page 9 of 10

formula has only few satisfying assignments, it could be difficult to locate these rare assignments by random
choices only. The following algorithms attempts to improve upon an assignment so as to move closer to a
satisfying assignment. For simplicity, we may assume that the formula is given in cnf (or, for that matter, in
3-cnf).

Input: A boolean formula 〈φ〉 in cnf.

Stages:
1. Let x1, . . . , xm be all the variables of φ.
2. Randomly pick a truth assignment T of x1, . . . , xm.
3. for i = 1, . . . , t repeat the following:
4. Evaluate φ at the current assignment T .
5. If the evaluation results in 1, accept.
6. Randomly select an unsatisfied clause from φ and a false literal in the clause.
7. Flip the truth assignment of this literal and change T accordingly.
8. No satisfying assignments have been found in t iterations, so reject.

How is this random walk algorithm expected to perform on a cnf formula? Consider the 3-cnf formula:

φ(x1, . . . , xm) :=

(
m∧

i=1

(xi ∨ xi ∨ xi)
)
∧

∧

16i,j,k6m
i6=j 6=k

(xi ∨ xj ∨ xk)

 .

There are exactly m clauses of the first type (xi ∨ xi ∨ xi) and m(m − 1)(m − 2), i.e., O(m3) clauses of
the second type (xi ∨ xj ∨ xk). The clauses of the first type indicate that φ has only one satisfying truth
assignment, namely, x1 = · · · = xm = 1. A randomly chosen truth assignment T is expected to have about
half of the variables assigned to 0. The probability of acceptance in Stage 5 is rather slim. Now let’s see
how the Stages 6 and 7 update T . Stage 6 picks a random clause. Since there are many more clauses of
the second type than of the first type, the chance that an unsatisfied clause of the second type is chosen is
quite big. Call this clause c := xi ∨ xj ∨ xk. Since c is false, we have xi = 0 and xj = xk = 1 in T .
Now the chance that Stage 7 changes the assignment of xj or xk from 1 to 0 is more than that it changes
the assignment of xi from 0 to 1. But then with higher probability T goes worse, i.e., more distant from the
correct assignment (all true)! Consequently, after a huge number of iterations (an exponential value in m)
we may remain unable to find the satisfying truth assignment.

However, it can be shown that if φ is any satisfiable 2-cnf formula, then the probability of meeting a
satisfying truth assignment after t = 2m2 iterations is at least 1/2. Thus the above random walk algorithm
solves 2SAT in randomized poly-time (RP). But we already know that 2SAT ∈ P and so this algorithm is
not a substantial discovery.

That the random walk algorithm didn’t work favorably for SAT does not imply there do not exist better
(more effective) randomized algorithms for SAT. May be there are. We don’t know!!!

Exercises for Chapter 5

* 1. Define the class PP′ to be a minor variant of PP as follows: L ∈ PP′ if and only if there exists a PPT N such that if
α ∈ L, N accepts α with probability> 1/2, whereas if α /∈ L, N rejects α with probability> 1/2. Thus PP′ accepts
by majority and rejects by non-minority. Show that PP′ = PP.

2. Define the class PP′′ to be another minor variant of PP as follows: L ∈ PP′′ if and only if there exists a PPT N such
that if α ∈ L, N accepts α with probability> 1/2, whereas if α /∈ L, N rejects α with probability> 1/2. Thus PP′′

both accepts and rejects by non-minority. Show that PP′′ = Σ∗.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 10 of 10 17642 Computational Complexity

* 3. Let k ∈ N be a constant. Define the class PPk as follows: L ∈ PPk if and only if there exists a PPT N such that
whenever α ∈ L, N accepts α with probability > 2−k, whereas for α /∈ L, N rejects α with probability > 1− 2−k.
(In other words, N accepts α if and only if more than a 2−k fraction of branches of N on α are accepting. Note that
PP′ = PP1.) Prove that PPk = PP.

4. Define the class BPP′ as follows: L ∈ BPP′ if and only if there exists a polynomial p(n) and a PPT N , such that
whenever α ∈ L, N accepts α with probability > 1

2 + 1
p(n) , and whenever α /∈ L, N rejects α with probability

> 1
2 + 1

p(n) , where n = |α|. Argue that BPP′ = BPP.

5. Prove that PP ⊆ PSPACE.

6. Prove the following conditional statements:
(a) If P = NP, then P = BPP. (Hint: Polynomial hierarchy.)
(b) If NP ⊆ coRP, then ZPP = NP.

* (c) If NP ⊆ BPP, then RP = NP. (Hint: Compute a (probably) satisfying assignment of a Boolean formula using
a BPP algorithm for SAT.)

7. Prove that RP and BPP are closed under union and intersection.

8. [P r o b a b i l i s t i c s p a c e - b o u n d e d T u r i n g m a c h i n e s] In the text we have studied only probabilistic
time-bounded Turing machines. Now we define probabilistic space classes. Let f(n) > logn

(a) Define the class RSPACE(f(n)) as follows: L ∈ RSPACE(f(n)) if and only if there exists an O(f(n))-space
and 2O(f(n))-time probabilistic Turing machineN with the property that if α ∈ L, thenN accepts αwith probability>
1/2, whereas if α /∈ L, then N rejects L with probability 1. In particular, define RPSPACE :=

⋃
k∈NRSPACE(nk)

and RL := RSPACE(logn). Show that

SPACE(f(n)) ⊆ RSPACE(f(n)) ⊆ NSPACE(f(n)).

In particular, L ⊆ RL ⊆ NL and RPSPACE = PSPACE.
** (b) Define the class RSPACE′(f(n)) as in Part (a) except that the restriction 2O(f(n))-time on N is now removed.

Show that RSPACE′(f(n)) = NSPACE(f(n)). In particular, RL′ = NL.

9. In this exercise we deal with an example of a problem in RL. Consider the language:

UPATH := {〈G, s, t〉 | G is an undirected graph with an s, t-path}.

The corresponding directed version PATH is known to be NL-complete and so is not in RL, unless RL = NL, a
relation which appears unlikely. However, UPATH ∈ RL as the remaining part of this exercise suggests.

A random walk in an undirected graph G is a sequence of steps with each step being a movement from a vertex to a
randomly chosen neighbor. Assume that G has an s, t-path. It can be shown (for example, see Papadimitriou) that a
random walk starting at s and consisting of 8|V (G)||E(G)| (which is O(m3) where m = |V (G)|) steps visits t with
probability> 1/2. Design an RL algorithm for UPATH based on this result.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

