
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 4 : Hierarchy theorems and intractability

Recall that we started this course with the basic aim of proving certain computational problems to be more
difficult than some others. So far we have made extensive classifications of problems based on the time
and space requirements of known algorithms for solving the problems. However, our goal is to analyze
problems rather than designing few algorithms for solving them. NP-complete problems are most difficult
in the class NP, but are not provably established to be more difficult than problems in P. In case P = NP,
every non-trivial problem in this common class becomes complete (Exercise 2.2.1) — a true set-back to the
notion of completeness. Similar comments hold for the class PSPACE and complete problems in it.

The obvious question that arises now is: Do there exist problems that are provably not in P? We call any
such problem an i n t r a c t a b l e p r o b l e m . We soon demonstrate that intractable problems do exist and
are often as easy to describe as SAT or TQBF. Space and time hierarchy theorems allow us to ascertain the
existence of and locate such problems.

We then extend the notion of nondeterministic acceptance by a Turing machine. This study leads to another
interesting hierarchy of problems inside PSPACE. This hierarchy does not immediately identify intractable
problems, but may be a powerful tool for settling the P = NP? question. We finally introduce relativization
techniques in order to establish why the P = NP? question is unlikely to be tackled by a diagonalization
argument, a procedure which plays the key role in undecidability and intractability proofs.

4.1 Space and time hierarchy

Space and time hierarchy theorems essentially state that if we allow asymptotically more space or time, TMs
can decide strictly bigger classes of problems. Proving such an assertion requires some intricate details that
we now introduce.

4.1 Definition A function f(n) > log n (of natural numbers) is said to be s p a c e c o n s t r u c t i b l e , if
there exists an O(f(n))-space DTM that halts with the binary representation of f(n) on its work-tape, when
started with 1n (a string of n 1’s) as input. For sublinear functions f(n) we consider the two-tape model of
a TM.

A function f(n) > n log n is called t i m e c o n s t r u c t i b l e , if there exists an O(f(n))-time DTM that
halts with the binary representation of f(n) on its tape, when started with 1n as input.

Most common functions > log n are space constructible. Examples include log n, n, n2, n3 log n and 2n.
Similarly, most natural functions > n log n are time constructible. Examples: n log n, n2, n3 log2 n, 2n.

4.2 Theorem [S p a c e h i e r a r c h y t h e o r e m] For any space constructible function f(n) there exists
a language L that is decidable in O(f(n)) space, but not in o(f(n)) space.

This theorem addresses deterministic space. A similar theorem holds for nondeterministic space too. The
space hierarchy theorem implies the following proper containments:

SPACE(g(n)) $ SPACE(f(n)), where f is space constructible and g(n) = o(f(n)).

SPACE(nc1) $ SPACE(nc2) for real values 0 6 c1 < c2 with nc2 space constructible.

PSPACE $ EXPSPACE. (4.1)

L $ PSPACE .

NL $ PSPACE (since by Savitch’s theorem NL ⊆ SPACE(log2 n)).

Page 2 of 6 17642 Computational Complexity

The similar theorem for time hierarchy is somewhat weaker. In case of space, any asymptotic (and space
constructible) increase allows a bigger class of languages to be decided, whereas for time we have to take
care of an additional logarithmic factor. Stronger time hierarchy theorems may be true, but no proofs are
known. Again we concentrate on deterministic time. A similar result holds for nondeterministic time too.

4.3 Theorem [T i m e h i e r a r c h y t h e o r e m] For any space constructible function f(n) there exists a
language L that is decidable in O(f(n)) time, but not in o(f(n)/ log f(n)) time.

The time hierarchy theorem immediately implies the following proper inclusions:

TIME(g(n)) $ TIME(f(n)), where f is time constructible and g(n) = o(f(n)/ log f(n)).

TIME(nc1) $ TIME(nc2) for real values 1 6 c1 < c2 with nc2 time constructible.

P $ EXP. (4.2)

The proper inclusions (4.1) and (4.2) imply existence of (provably) intractable problems. Let us first define
complete problems in these exponential classes.

4.4 Definition A language L is called E X P S P A C E - c o m p l e t e , if the following two conditions hold:

(1) L ∈ EXPSPACE.

(2) A 6P L for every A ∈ EXPSPACE.

Similarly, for the exponential time class EXP = EXPTIME we define:

4.5 Definition A language L is called E X P - c o m p l e t e , if the following two conditions hold:

(1) L ∈ EXP.

(2) A 6P L for every A ∈ EXP.

If any complete problem in the class EXP or EXPSPACE is also in P, the exponential class collapses
to the polynomial time class P, which is impossible by the hierarchy theorems. Thus EXP-complete and
EXPSPACE-complete problems are provably intractable.

4.6 Example Consider the following problems on equivalence of two regular expressions:

EQREX := {〈R,R′〉 | R and R′ are equivalent regular expressions}
EQREX∗ := {〈R,R′〉 | R and R′ are equivalent star-free regular expressions}
EQREX∩ := {〈R,R′〉 | R and R′ are equivalent regular expressions with intersection}
EQREX↑ := {〈R,R′〉 | R and R′ are equivalent regular expressions with exponentiation}

EQREX∗ is coNP-complete, EQREX is PSPACE-complete, EQREX∩ is EXP-complete, and EQREX↑ is
EXPSPACE-complete. Thus EQREX∩ and EQREX↑ are provably intractable.

Exercises for Section 4.1

1. Verify that 2n2 + 3n+ 4, 2n, 3n and 5n
2

are space and time constructible functions of n.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 4: Hierarchy theorems and intractability Page 3 of 6

2. It can be proved that TIME(f(n)) ⊆ SPACE(f(n)/ log f(n)) for a time and space constructible function f(n).
Conclude that TIME(nk) $ SPACE(nk) for every k ∈ N. Does this imply that P $ PSPACE?

3. Prove that NTIME(nk) $ PSPACE for every k ∈ N. Does this imply that NP $ PSPACE?

4. Let f(n) be a time constructible function. We say that a language L is d e c i d a b l e in time f(n), if L is the language
of a TM that requires O(f(n)) steps in every branch of computation (accepting or rejecting) on an input of size n.
Let us also call a language L r e c o g n i z a b l e in time f(n), if there exists a TM that accepts L with O(f(n)) steps
in every accepting branch of computation on an input of size n (The rejecting branches need not even halt!). Prove
that if L is recognizable in f(n) time, then it is decidable in f(n) log f(n) time. Conclude that L is recognizable in
poly-time, if and only if it is decidable in poly-time.

4.2 Polynomial time hierarchy

Recall that an NTM accepts an input, if and only if there exists at least one accepting branch of computation.
However, we could arrange that an NTM accepts if and only if all branches of computation accept. In fact,
we may go more general so as to assign each node in the computation tree to be accepting or rejecting
depending on the acceptability of ‘some’ or ‘all’ of its children. This concept is illustrated in Figure 4.1
which illustrates the computation tree for some nondeterministic computation. The leaf nodes are marked
‘accept’ or ‘reject’ depending on the corresponding configurations.

Figure 4.1: An alternating computation

reject

accept

rejectaccept

reject

acceptreject

reject

accept

reject

rejectreject

If this computation were carried out in a usual NTM, the input would be accepted, since there exist accepting
branches of computations (paths from the root to accepting leaves). However, in our example we have
marked each non-leaf node by the OR (∨) or the AND (∧) symbol. A non-leaf node marked with ∨ accepts,
if some of its children is/are accepting, whereas a non-leaf node marked by ∧ is accepting, if all of its
children are accepting. Thus we may work upwards starting from the leaves and determining accept and
reject status of the non-leaf nodes. The input is accepted, if and only if the root node is accepting. More
formally, we define the following. We may assume without loss of generality that an NTM has only one
accepting state qa and only one rejecting state qr. Moreover, whenever the machine enters one of these
states, it accepts/rejects and halts.

4.7 Definition An a l t e r n a t i n g T u r i n g m a c h i n e (A T M) is an NTM for which each state other
than qa and qr is either an existential state or a universal state. The computation tree of the machine on an
input has each non-leaf node marked by ∨ or ∧ depending on whether the state in the configuration at that
node is an existential or a universal state. The machine accepts the input based on the procedure mentioned
just before this definition.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 4 of 6 17642 Computational Complexity

Thus ATMs are NTMs with a more general acceptance criterion. In other words, usual NTMs incorporate
only the ‘there exists’ (∃) logical structure. An ATM, on the other hand, can handle both ‘there exists’ and
‘for all’ (∀) logical constructs. Moreover, these constructs may come in any number and in any order in the
span of a computation. The question that now arises is if this new feature adds to the language deciding
capabilities of NTMs. The precise answer is not known. However, based on the number of nondeterministic
choices an ATM makes, we can define an interesting hierarchy.

Since an ATM is essentially an NTM, its time and space requirements can be defined in an analogous manner
as we did for a usual NTM.

ATIME(f(n)) := {L | L is decided by an O(f(n))-time ATM},
ASPACE(f(n)) := {L | L is decided by an O(f(n))-space ATM},

AP :=
⋃

k∈N
ATIME(nk),

APSPACE :=
⋃

k∈N
ASPACE(nk),

AL := ASPACE(log n).

4.8 Example (1) Consider the language

TAUTOLOGY := {〈φ〉 | φ is a tautology},

where tautology means a Boolean expression that evaluates to true for every assignment of its variables.
I claim that TAUTOLOGY ∈ AP. For the proof one may, given φ, universally generate all possible
assignments of the variables, and evaluate φ at the assignment selected. If the evaluation result is 0, then the
input is rejected, else it is accepted. All problems in coNP (like TAUTOLOGY) can be shown to be in AP
(See Exercise 4.2.1).

(2) Two Boolean formulas φ and ψ (on the same set of variables) are called equivalent, if they evaluate to
the same value for every truth assignment of the variables. We measure the length of a Boolean formula by
the number of symbols in it. A Boolean formula is called minimal, if it has no shorter equivalent. Define

MIN-FORMULA := {〈φ〉 | φ is a minimal Boolean formula}.

Note that φ is minimal, if and only if for every formula ψ, shorter than φ, there exists an assignment of the
variables such that φ and ψ evaluate to different values. We have MIN-FORMULA ∈ AP, since one can
universally select a shorter formula ψ, existentially select an assignment of the variables, and subsequently
check if φ and ψ evaluate to different values under this assignment. MIN-FORMULA is not known to be
in NP and coNP. Thus alternation appears to inject more power to our computing device.

The following theorem relates the alternating time and space classes with deterministic classes.

4.9 Theorem For any f(n) > n one has:

ATIME(f(n)) ⊆ SPACE(f(n)) ⊆ ATIME(f 2(n)),

whereas for any f(n) > log n one has:

ASPACE(f(n)) = TIME
(
2O(f(n))

)
.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 4: Hierarchy theorems and intractability Page 5 of 6

In particular, AP = PSPACE, APSPACE = EXP and AL = P. (Note that neither of the similar equalities
NP = PSPACE, NPSPACE = EXP and NL = P for NTMs could be proved till date.)

4.10 Definition Let i > 0 be an integer. A Σi- A T M is an ATM that makes at most i nondeterministic
(existential or universal) choices in any branch of computation, with the first choice being existential. A Πi-
A T M is similar except that the first choice is universal. Let ΣiTIME(f(n)) and ΠiTIME(f(n)) denote
the classes of languages decided by O(f(n))-time Σi- and Πi-ATMs respectively. Define:

ΣiP :=
⋃

k∈N
ΣiTIME(nk),

ΠiP :=
⋃

k∈N
ΠiTIME(nk).

The classes ΣiP and ΠiP, i = 0, 1, 2, . . . , define a hierarchy of languages, called the p o l y n o m i a l t i m e
h i e r a r c h y . Their union defines the class

PH :=
⋃

i∈Z+

ΣiP =
⋃

i∈Z+

ΠiP.

The two unions in the definition of PH are the same, since one can always make dummy (unused) choices
at the beginning of an algorithm.

We have P = Σ0P = Π0P, NP = Σ1P, coNP = Π1P. We also have MIN-FORMULA ∈ Π2P. By
Theorem 4.9 PH ⊆ PSPACE. It is not known if this inclusion is proper (See Exercises 4.2.5, 4.2.6).

Exercises for Section 4.2

1. Demonstrate that UNSAT := SAT = {〈φ〉 | φ is not satisfiable} is in AP. More generally, show that coNP ⊆ AP.

2. Give a poly-time alternating algorithm to decide the language

HALFCYCLE := {〈G〉 | The longest cycle in the directed graph G is of length bn(G)/2c}.

3. Prove that coAP = AP, coAL = AL and coAPSPACE = APSPACE. Prove also that coΣiP = ΠiP.

* 4. Show that P = NP, if and only if P = PH.

5. Define complete problems in the class PH by usual poly-time reductions. Show that the existence of a PH-complete
problem implies:
(a) There exists an i0 ∈ N such that ΣiP = Σi0P for all i > i0.
(b) There exists a j0 ∈ N such that ΠjP = Πj0P for all j > j0.
In particular, if PH = PSPACE, the polynomial hierarchy collapses to only finitely many different levels. (PSPACE
has complete problems.) By Theorem 4.9 PH ⊆ PSPACE. It is not known whether these two classes are equal.

6. Recall that AP = PSPACE, whereas by the remarks in the last exercise we do not know whether PH = PSPACE.
But then what is wrong in the following proof of the assertion AP = PH?

We already know that PH ⊆ PSPACE = AP. In order to prove the reverse inclusion, choose any
L ∈ AP. By definition L has a poly-time alternating algorithm. Suppose that this algorithm makes at
most i nondeterministic choices. If the first choice is existential, we have L ∈ ΣiP; if it is universal,
L ∈ ΠiP. But PH =

⋃
i∈N ΣiP =

⋃
i∈NΠiP. Thus in all cases we have L ∈ PH.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 6 of 6 17642 Computational Complexity

4.3 Relativization

So far we have used the diagonalization method for locating undecidable and intractable problems. All these
proofs are based on simulating other machines and reversing the decision of the simulated machine on some
input after the simulation stops. Relativization provides strong evidence that such a simulation technique is
unlikely to settle the P = NP? question.

We give a conventional TM (deterministic or nondeterministic) a divine power that comes in the form of a
black-box. The black-box stands for a language L. Whenever the TM queries the black-box about a string
α, it obtains in a single step of computation the answer whether α ∈ L. How such a black-box can be
implemented is not an issue here; it is treated as an oracle.4.1 We take interest in the question if this ‘free’
information about L allows the TM to accept other languages more easily than before.

4.11 Definition An o r a c l e is a language. An o r a c l e T u r i n g m a c h i n e ML is a TM with an oracle
tape corresponding to the oracle L. Whenever M writes a string α on this tape, it gets the decision whether
α ∈ L in a single computation step. We define PL to be the class of problems solvable by poly-time TMs
given the oracle for L. NPL and coNPL can be analogously defined.

4.12 Example The following two examples use the SAT oracle.

(1) NP ⊆ PSAT.

(2) NONMIN-FORMULA := {〈φ〉 | φ is not a minimal Boolean formula} is in NPSAT.

4.13 Theorem (1) There exists an oracle A for which PA = NPA.

(2) There exists an oracle B for which PB 6= NPB .

Assume that one could prove P = NP or otherwise by a simulation argument using diagonalization. Both
the simulating and the simulated machine could use the same oracle L, thereby proving the same relation
about the relative classes PL and NPL. But that cannot be consistent with both the (provable) assertions of
the previous theorem.

Exercises for Section 4.3

1. Show that:
(a) If L ∈ P, then PL = P.
(b) If PL = NP for some oracle L, then NP = coNP.

2. Prove that the language HALFCYCLE of Exercise 4.2.2 is in NPSAT.

3. The concept of oracle TMs can be extended by giving the oracle the capability to answer in a single computation step
a query about any arbitrary language in an entire complexity class C. We define the classes PC , NPC , etc. relative to
the oracle for the class C. For example, PNP stands for all problems that are solvable in deterministic polynomial time
relative to the oracle for the class NP. More precisely, PC :=

⋃
A∈C PA, NPC :=

⋃
A∈C NPA, etc. Prove that:

(a) PNP = PcoNP = PSAT = PUNSAT.
** (b) NPNP = NPSAT = Σ2P and coNPNP = Π2P. (Compare Exercises 4.2.2 and 4.3.2.)

(In general, it can be shown that ΣiP = NPΣi−1P and ΠiP = coNPΣi−1P for every i > 1. These relations provide an
alternate way of defining the polynomial hierarchy, namely, in terms of oracle TMs.)

4.1According to the Merriam-Webster online dictionary, an ‘oracle’ is a person through whom a deity (God) is believed to speak.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

