
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 3 : Space complexity

Time and space are two major parameters for which we measure complexities of computational problems.
This chapter is an introduction to the classification of problems based on their space (i.e., memory)
requirements. The relationships between the time and space complexity classes will also be explored.

Unless otherwise stated, we take the one-tape one-head TM as our standard model of computation. However,
it is meaningful to talk about sub-linear space complexities. Our usual TM model does not comply gracefully
with this context. So we will make some relevant changes in the model, as and when necessary.

Notice that space and time differ dramatically in an important aspect: Space can be reused, whereas time
cannot be. This leads to interesting differences between time and space complexity results.

3.1 Polynomial space complexity

The space complexity f(n) of a DTM M is measured (as a function of the input size n) by the maximum
number of tape cells scanned by M on an input of size n. For an NTM we have a similar definition, but now
the maximum is taken over all possible branches of computations over all possible inputs of size n.

SPACE(f(n)) := {L | L is decided by an O(f(n))-space DTM},
NSPACE(f(n)) := {L | L is decided by an O(f(n))-space NTM}.

To start with we restrict our attention to polynomial space complexities:

PSPACE :=
⋃

k∈N
SPACE(nk) and NPSPACE :=

⋃

k∈N
NSPACE(nk).

These classes are invariant for all reasonable encoding schemes and for all computational models that are
polynomially equivalent to the one-tape one-head TM.

3.1 Example (1) The satisfiability problem SAT is decided by a DTM that evaluates an input for all
possible truth assignments of the variables. The DTM needs the storage of only the current truth assignment
of the variables and a mechanism to step through the list of all possible assignments. All these can be done
in linear space (but exponential time), so SAT ∈ PSPACE.

(2) Consider the language

ALLNFA := {〈A〉 | A is an NFA with L(A) = Σ∗}.

An NFA with s states accepts all strings, if and only if it accepts all strings of length 6 2s. This fact allows
us to design an NTM N that decides ALLNFA by guessing a string of length6 2s rejected by the input NFA
A. The simulation of A by N need only store a list of the states of A and a marker indicating the current
state of A. Thus N requires nondeterministic linear space, i.e., ALLNFA ∈ NPSPACE.

3.2 Lemma Let M be an O(f(n))-space TM with s states and with a tape alphabet of size g. Then M has
at most sf(n)gf(n) different configurations on an input of size n. For f(n) > n this number is 2O(f(n)).

3.3 Theorem [S a v i t c h ’ s t h e o r e m] For f(n) > n we have NSPACE(f(n)) ⊆ SPACE(f 2(n)).

3.4 Corollary PSPACE = NPSPACE.

Page 2 of 6 17642 Computational Complexity

Thus the deterministic and nondeterministic polynomial space complexity classes are provably the same.
The corresponding question for time complexity (P = NP) is yet unresolved.

Now we look at the relation between time and space complexity classes. A poly-time TM cannot consume
more than poly-space and so P ⊆ PSPACE and NP ⊆ NPSPACE. Since a TM that halts must
not repeat any configuration on a given input (so as to avoid infinite loops), Lemma 3.2 guarantees that
PSPACE ⊆ EXP. So we have a situation as depicted in Figure 3.1. We can (and will) prove that P $ EXP,
but it is unknown which of the containment(s) in the chain P ⊆ NP ⊆ PSPACE ⊆ EXP is/are proper.

Figure 3.1: Relation between time and space complexity classes

P NP PSPACE−
complete

PSPACE
= NPSPACE

EXP

In order to identify the most difficult problems in the class PSPACE we should identify a suitable reduction
mechanism among PSPACE problems. In order that this reduction can correctly portray the relative
difficulty of different problems in this class, we will stick to poly-time reducibility. (Note that poly-time
is (apparently) a more stringent constraint that poly-space.)

3.5 Definition A language L is called P S P A C E - c o m p l e t e , if it satisfies the following two conditions:

(1) L ∈ PSPACE, and

(2) A 6P L for every A ∈ PSPACE.

3.6 Theorem TQBF is PSPACE-complete, where TQBF is defined to be the language

TQBF := {〈φ〉 | φ is a true fully quantified Boolean formula}.

Given a fully quantified Boolean formula φ = ∃x1∀x2∃x3 · · ·Qxk[ψ], we may think of a game in which
two players E and A take part and assign variables x1, x2, . . . , xk in succession with E assigning those
corresponding to the existential quantifier (∃) and A those corresponding to the universal quantifier (∀). If
this assignment lets ψ evaluate to true, player E wins, otherwise player A wins. We say that player E has
a winning strategy for formula φ, if irrespective of the assignments of player A, player E can assign the
variables (bound to existential quantifiers) in such a way that E wins. It is then clear that E has a winning
strategy for φ, if and only if φ is a true formula. It follows that:

3.7 Theorem FORMULA-GAME is PSPACE-complete, where

FORMULA-GAME := {〈φ〉 | Player E has a winning strategy for the formula-game associated

with the fully quantified Boolean formula φ}.

Consider another game: ‘Antakhshari’ on the name of cities (a.k.a. the geography game). This game can be
modeled as a problem associated with a directed graph G. Each node in the graph is labeled by the name of
a city and an edge from node u to node v implies that u’s label ends with the same letter as v’s label begins

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 3: Space complexity Page 3 of 6

with. The game starts at a predetermined node in the graph and two players alternately moves in the graph to
yet-unvisited vertices following the edges of the graph. The player who fails to make a next move loses. In a
generalized version of this game, we are given an arbitrary directed graph (without any association of nodes
with cities or of edges with matching letters) and a predetermined node in it. The problem is to determine if
the first player has a winning strategy. Formally:

GA := {〈G, s〉 | The first player has a winning strategy for the generalized Antakhshari game on

the directed graph G, if the game starts at node s}.

3.8 Theorem GA is PSPACE-complete.

For the proof of the theorem one may reduce FORMULA-GAME to GA in poly-time. Since it is believed
that P $ PSPACE, there is seemingly no poly-time algorithm for the first player to check the existence of
a winning strategy, let alone determining it.

Exercises for Section 3.1

1. Show that:
(a) Any PSPACE-hard language is also NP-hard.
(b) If every NP-hard language is also PSPACE-hard, then PSPACE = NP.

2. Demonstrate that PSPACE is closed under union, intersection, complement and Kleene closure.

* 3. Show that the language

DTMIN-PLACE := {〈M,α〉 |M accepts α without leaving the first |α| cells of the tape}

is PSPACE-complete. (Hint: You may directly reduce any L ∈ PSPACE to DTMIN-PLACE.)

4. A l i n e a r b o u n d e d a u t o m a t o n (L B A) is a one-tape one-head nondeterministic TM with the tape finite and just
big enough to hold the entire input. If an LBA tries to move its head outside its tape at either end, some mechanism
prevents it from doing so, and the head remains in the old position. Deduce that the language

ALBA := {〈M,α〉 | The LBA M accepts α}

is PSPACE-complete.

5. The generalized tic-tac-toe game is played on an n×n board with player X starting and with players X and O making
alternate moves. The player who first places his marker in five consecutive cells in a row, column or diagonal wins.
The game ends in a draw if no such sequence is present when all of the n2 cells are marked. Show that the language

GT :={〈c〉 | c is an intermediate configuration of the board with next move by X and with a winning strategy for X}

is in PSPACE. (Hint: Use recursion.)

3.2 Logarithmic space complexity

A TM is expected to read the full input given to it and just doing that takes time linear in the input size.
Languages (like the set of all binary strings starting with 0) for which the entire input need not be scanned
are uninteresting in complexity theory. So we do not bother to define sublinear time complexity classes.

With space complexity, on the other hand, the situation is different. Suppose that the input given in a read-
only memory (like CD-ROM) and the objective is to process the input using a separate read/write memory.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 4 of 6 17642 Computational Complexity

Figure 3.2: The TM model for log-space computations

Read/Write infinite work tape

Read−only finite input tape

control
Finite

Even when the input is pretty big, we may require little additional space to process the data. In view of this
it is expedient to define complexity classes comprising problems demanding sublinear (additional) space.

Our standard one-tape one-head TM requires linear space in its working memory just to store the input. It
is, therefore, necessary now to alter this model a bit to cope with sublinear space complexity. A solution is
provided in Figure 3.2. This TM has a read-only tape which is finite and just big enough to store the input.
Some mechanism prevents the read head from falling off either end of the input. For the processing of the
input the TM uses an infinite read/write work tape. The space complexity of this TM is measured by the
number of cells in its work tape, visited by the read/write head.

The configuration of this new model is described by the following quantities:

• The state of the finite control.

• The content of the work tape.

• The positions of the two heads.

Note that the content of the input tape is not part of the configuration, since this tape contains precisely the
(known) input α throughout the machine’s computation.

3.9 Lemma Let M be an f(n)-space TM of the kind shown in Figure 3.2. The number of configurations
of M on an input of size n is at most n2O(f(n)). For f(n) > lgn this number is 2O(f(n)).

Savitch’s theorem continues to hold for this new model for space complexities f(n) > lgn. Moreover, for
space complexities f(n) > n the new model is equivalent to our previous one.

Sublinear spaces like
√
n or n/ lg n are not really interesting. We start with logarithmic space. There is a

class of problems which requires just O(lgn) space (and not a polynomial of lg n).

L := SPACE(lg n) and NL := NSPACE(lgn).

These classes are robust against change of (reasonable) encoding schemes (but not necessarily against
change of the computational model). It is worthwhile to mention here that logarithmic space is sufficient
to store pointers to the input. Thus we may expect a decent bunch of problems in the classes L and NL.
These classes (more correctly, log-space reduction algorithms) are also useful to differentiate among ‘easy’
problems, like those in the class P.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 3: Space complexity Page 5 of 6

3.10 Example (1) The context-free language {0k1k | k > 0} ⊆ {0, 1}∗ is in L. Given an input α a
deterministic TM may first check if α is in the correct form – this stage requires no extra space. Once a
string of the format 0k1l is confirmed, the numbers k and l are counted in the work tape and subsequently
compared with one another. Since k and l can be stored in binary using O(lgn) bits, the work tape requires
only logarithmic space.

(2) We have seen that the language

PATH := {〈G, s, t〉 | There is a path from vertex s to vertex t in a directed graph G}

is in P. We do not know if PATH ∈ L. But we can design an NTM that nondeterministically explores paths
from s of length 6 m (where m = n(G)) and accepts if and only if t is reachable from s. At any point of
the computation it is sufficient to store only the current node in a path being explored. Thus PATH ∈ NL.

PATH illustrates the possibility that L 6= NL. In order to tackle this (yet unsolved) question, it is worthwhile
to look at complete problems in the class NL. By Lemma 3.9 L ⊆ P and so poly-time reducibility is
inadequate to compare relative difficulties of problems in NL. We must use ‘easier’ reductions.

3.11 Definition A l o g - s p a c e t r a n s d u c e r is a Turing machine as described in Figure 3.3. It consists
of a finite read-only input tape that holds the input (and nothing else), a write-only output tape (possibly
infinite) and a usual infinite read/write work tape. On an input α of size n the transducer uses (i.e., visits or
scans) O(lgn) symbols in its work tape and ends its computation with f(α) (and nothing else) on the output
tape. The function f : Σ∗ → Σ∗ that the transducer computes is called a l o g - s p a c e c o m p u t a b l e
f u n c t i o n .

We say that a languageA is log-space reduc ib le to a languageB, if there exists a log-space computable
function f , such that α ∈ A if and only if f(α) ∈ B. In this case we write A 6L B.

Figure 3.3: A log-space transducer

Read/Write infinite work tape

Read−only finite input tape

control
Finite

Write−only output tape

3.12 Definition A language L is called N L - c o m p l e t e , if it satisfies the following two conditions:

(1) L ∈ NL, and

(2) A 6L L for every A ∈ NL.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 6 of 6 17642 Computational Complexity

3.13 Theorem If A 6L B and B ∈ L, then A ∈ L too.

3.14 Theorem If A 6L B and A in NL-complete, then B is NL-complete too.

3.15 Theorem If some NL-complete language is in L, then L = NL.

3.16 Theorem PATH is NL-complete.

3.17 Corollary NL ⊆ P.

We end our study of logarithmic space complexity by introducing some other complexity classes. First we
define coNL to be the class of all languages that are complements of languages in NL. One can design a
nondeterministic log-space algorithm for PATH. Since PATH is NL-complete, it follows that:

3.18 Theorem NL = coNL.

We can also define super-linear log-space classes:

Lk := SPACE(lgk n), NLk := NSPACE(lgk n), PolyL :=
⋃

k∈N
Lk =

⋃

k∈N
NLk.

These classes apparently turn out to be not so useful as the classes L = L1 and NL = NL1. We have the
following containments:

Lk $ Lk+1 [By the space hierarchy theorem]
NLk $ NLk+1 [By the space hierarchy theorem]

Lk ⊆ NLk [It’s not known if this containment is proper.]
NLk ⊆ L2k [By Savitch’s theorem]

PolyL $ PSPACE [By the space hierarchy theorem]

Exercises for Section 3.2

1. Demonstrate that NL is closed under union, intersection and Kleene closure.

2. Show that:
(a) The language consisting of strings with properly nested parentheses is in L.

* (b) The language consisting of strings with properly nested parentheses and (square) brackets is also in L.

3. Prove that BIPARTITE ∈ NL.

4. If f and g are log-space computable functions, show that so also is g ◦ f . Conclude that if A 6L B and B 6L C,
then A 6L C.

** 5. Demonstrate that 2SAT is NL-complete. (Hint: You may show that PATH 6L 2SAT.)

6. A directed graphG is called strongly connected, if for every pair of vertices u, v inG there exists a (directed) u, v path
in G. Prove that the language

STRONGLY-CONNECTED := {〈G〉 | G is a strongly connected digraph}
is NL-complete. (Hint: You may use reduction from PATH.)

* 7. Prove that TQBF and GA are PSPACE-complete even under log-space reductions. Conclude that these languages
are not in NL.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

