
Dr. Abhijit Das, Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 2 : Time complexity

In this chapter we study some basic results on the time complexities of computational problems. We
concentrate our attention mostly on polynomial time complexities, deterministic and nondeterministic.

2.1 The complexity classes P and NP

P is the class of languages accepted by poly-time DTMs, whereas NP is the class of languages accepted by
poly-time NTMs. More specifically for input size n we define:

P :=
⋃

k∈N
TIME(nk), and NP :=

⋃

k∈N
NTIME(nk).

These classes are invariant for all computational models that are polynomially equivalent to the single-tape
single-head TM (deterministic for P, nondeterministic for NP).

We use e n c o d i n g s 〈. . .〉 of (a finite number of) objects into a string. We assume only reasonable
encodings. Examples of reasonable encodings include the binary (or decimal or hexadecimal) encoding of
positive integers, adjacency matrix representation of a graph and so on. The unary encoding of positive
integers is not reasonable, since it demands unreasonable (exponential) amount of space compared to
reasonable encodings (like binary).

2.1 Example (1) The language

PATH := {〈G, s, t〉 | There is a path from vertex s to vertex t in a directed graph G}

is in P. The proof is based on search algorithms (like BFS or DFS) in the graph.

(2) The language

RELPRIME := {〈x, y〉 | The positive integers x and y are relatively prime}

is also in P. The proof is based on the Euclidean division and gcd algorithms.

(3) Every context-free language is in P. For the proof one may use a dynamic programming algorithm for
context-free grammars in Chomsky-normal form.

NP comprises precisely the languages that are verifiable in poly-time, i.e., that have succinct certificates.

2.2 Definition A v e r i f i e r for a language L ⊆ Σ∗ is defined to be a DTM V , such that

L = {α | 〈α, β〉 ∈ L(V) for some β ∈ Σ∗}.

The string β is a c e r t i f i c a t e for the membership of α in L. V is called a p o l y - t i m e v e r i f i e r , if V
runs in poly-time in the size of α. For a poly-time verifier a certificate β for α must be of polynomial length
in |α|. Such certificates are called s u c c i n c t c e r t i f i c a t e s .

2.3 Theorem A ∈ NP if and only if A has a poly-time verifier.

Page 2 of 6 17642 Computational Complexity

2.4 Example The following languages are in NP:

HAMPATH := {〈G, s, t〉 | There is a Hamiltonian path from vertex s to vertex t in the

directed graph G}
UHAMPATH := {〈G, s, t〉 | There is a Hamiltonian path from vertex s to vertex t in the

undirected graph G}
CLIQUE := {〈G, k〉 | The undirected graph G has a k-clique}

INDEP-SET := {〈G, k〉 | The undirected graph G has an independent set of size k}
VERTEX-COVER := {〈G, k〉 | The undirected graph G has a vertex cover of size k}

COMPOSITE := {〈x〉 | The positive integer x is composite}
SUBSET-SUM :=

{
〈S, t〉 | There is a subset T of the set S with t =

∑

x∈T
x
}

SAT := {〈φ〉 | φ is a satisfiable Boolean formula}
3SAT := {〈φ〉 | φ is a satisfiable Boolean formula in 3-cnf}

Exercises for Section 2.1

1. Prove that the following languages are in P:

CONNECTED := {〈G〉 | G is a connected undirected graph}
BIPARTITE := {〈G〉 | G is an undirected bipartite graph}

TRIANGLE-FREE := {〈G〉 | G is a triangle-free undirected graph}

2. Show that the language GRAPHISO := {〈G1, G2〉 | The undirected graphs G1 and G2 are isomorphic} is in NP.

** 3. Show that the language PRIME := {〈x〉 | x is a prime positive integer} is in NP. (Remark: Of course, we now
know that PRIME ∈ P and so in NP as well. An independent proof that PRIME ∈ NP is not as easy as proving
COMPOSITE ∈ NP. You may use the fact that p ∈ N is prime if and only if Z∗p is cyclic and of order p − 1. You
may require the prime factorization of p− 1 as part of a certificate for primality of p.)

* 4. (a) Demonstrate that the class P is closed under union, intersection, complement, concatenation and Kleene star.
(b) Prove that the class NP is closed under union, intersection, concatenation and Kleene star. (Remark: It is widely
believed that NP is not closed under complement.)

2.2 NP-complete problems

Complete problems in a complexity class constitute the set of most difficult problems in the class. The
definition of completeness in a particular class depends on suitable reduction algorithms between problems.

2.5 Definition A p o l y - t i m e c o m p u t a b l e f u n c t i o n f : Σ∗ → Σ∗ is a function for which a
poly-time DTM M exists with the property that M , on input α, halts with f(α) (and nothing else) on its
tape. A language A is p o l y - t i m e r e d u c i b l e to a language B, if there exists a poly-time computable
function f such that for every α we have α ∈ A if and only if f(α) ∈ B. In this case we write A 6P B.

2.6 Definition A language L is called N P - c o m p l e t e , if:

(1) L ∈ NP and

(2) A 6P L for every A ∈ NP.

2.7 Theorem If A 6P B and B ∈ P, then A ∈ P.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 2: Time complexity Page 3 of 6

2.8 Theorem If A is NP-complete and A ∈ P, then P = NP.

2.9 Theorem If A is NP-complete and A 6P B, then B is NP-complete too.

The last theorem suggests that once we have proved certain problems to be NP-complete, we can reduce
these problems to other problems in NP to prove the NP-completeness of these new problems. That makes
the class of NP-complete problems bigger and allows more possibilities for reductions to newer problems.
However, the challenge is to prove from the scratch a first NP-complete problem to be so. This is done by
the following pioneering work.

2.10 Theorem [C o o k - L e v i n] SAT is NP-complete.

A simple continuation of the proof of Cook-Levin’s theorem implies:

2.11 Theorem 3SAT is NP-complete.

2.12 Example All the problems introduced in Example 2.4 (except COMPOSITE) can be proved to be
NP-complete. One may use the following reductions: 3SAT 6P CLIQUE, CLIQUE 6P INDEP-SET,
INDEP-SET 6P VERTEX-COVER, 3SAT 6P HAMPATH, HAMPATH 6P UHAMPATH and
3SAT 6P SUBSET-SUM.

Exercises for Section 2.2

1. Show that if P = NP and L ∈ P \ {∅,Σ∗}, then L is NP-complete.

2. Show that 2× 2 windows are not sufficient in the proof of the Cook-Levin theorem.

** 3. Let 2SAT := {〈φ〉 | φ is a satisfiable Boolean formula in 2-cnf}. Show that 2SAT ∈ P.

4. Prove that the following problems are NP-complete.

HAMCYCLE := {〈G〉 | There is a Hamiltonian cycle in the directed graph G}
UHAMCYCLE := {〈G〉 | There is a Hamiltonian cycle in the undirected graph G}

5. [T h e t r a v e l i n g s a l e s p e r s o n p r o b l e m] Assume that a salesperson wishes to visit m cities with each city
visited exactly once. Associated with each pair of cities a (positive) cost representing the overhead for inter-city travel
(assumed symmetric with respect to the two cities). The objective of the salesperson is to reduce the total cost for the
travel. Consider an undirected (complete) graph on m vertices with each vertex representing a city and with each edge
labeled by the cost of the corresponding inter-city travel. The traveling salesperson problem can be reformulated as
finding an (undirected) Hamiltonian cycle in the graph with the minimum sum of labels on the edges of the cycle. The
following is the decision version of this problem:

TSP := {〈G, k〉 | G has a Hamiltonian cycle of (total) cost 6 k}.

Show that TSP is NP-complete.

6. Let DOUBLE-SAT := {〈φ〉 | φ has> 2 satisfying assignments}. Show that DOUBLE-SAT is NP-complete.

7. For a fixed k define kCOLOR := {〈G〉 | The undirected graph G is k-colorable}. Prove that:
* (a) 2COLOR ∈ P.

** (b) 3COLOR is NP-complete.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 4 of 6 17642 Computational Complexity

2.3 The class coNP

The complements of languages in NP constitute the class coNP:

coNP := {L | L̄ ∈ NP}.

Thus coNP consists of languages that have p o l y - t i m e d i s q u a l i f i e r s . It is not known if NP = coNP.
The popular belief is that these two classes are different. One can define complete problems for the class
coNP using poly-time reductions as in Definition 2.6. It turns out that:

2.13 Theorem L is NP-complete if and only if L̄ is coNP-complete.

2.14 Theorem If P = NP, then NP = coNP.

However, one may have NP = coNP, even when P 6= NP. We also have the following result:

2.15 Theorem If a coNP-complete problem is in NP, then NP = coNP.

2.16 Theorem P ⊆ NP ∩ coNP.

It is widely believed that P $ NP ∩ coNP. The conjectured relationships among the complexity classes
introduced so far are described in Figure 2.1. Here all containments are conjectured to be proper. We can
only prove P $ EXP, where EXP is the deterministic exponential-time class defined for input size n as:

EXP :=
⋃

k∈N
TIME(2n

k
).

The exponential-time simulation of an NTM by a DTM implies:

2.17 Theorem NP ⊆ EXP.

Figure 2.1: Conjectured relationships among the time complexity classes

EXP

NP coNP

P
NP−

complete
coNP−

complete

Exercises for Section 2.3

1. (a) Prove that the class EXP is closed under union, intersection, complement, concatenation and Kleene star.
(b) Deduce that coNP ⊆ EXP.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Chapter 2: Time complexity Page 5 of 6

2. A s t r o n g n o n d e t e r m i n i s t i c T u r i n g m a c h i n e has three possible outcomes: “accept”, “reject” and “notsure”,
and decides a language L as follows: If α ∈ L, all branches of computation on input α end up in outcomes “accept” or
“notsure”, with at least one branch providing an “accept” answer. On the other hand, if α /∈ L, all possible branches
of computation on α end up in “reject” or “notsure”, with at least one “reject” answer. Deduce that L is decided by a
poly-time strong NTM if and only if L ∈ NP ∩ coNP.

* 3. Define the decision version of the integer factoring problem as:

FACTORING := {〈n, k〉 | n ∈ N has a factor d with 1 < d < k}.

Show that FACTORING ∈ NP ∩ coNP. (Hint: For the proof of FACTORING ∈ coNP you may assume that
PRIME ∈ NP.)

** 4. The nondeterministic exponential-time class NEXP is defined as:

NEXP :=
⋃

k∈N
NTIME(2n

k

),

where n is the input size. Clearly, EXP ⊆ NEXP. It is not known if (but popularly believed that) this containment is
proper. Prove that if P = NP, then EXP = NEXP. (Hint: Let L ∈ NEXP and N an NTM that decides L in time

2n
k

for some k ∈ N. Define the language L′ := {α 2|α|
k−|α| | α ∈ L}, where is a ‘quasiblank’ symbol. First show

that L′ ∈ NP. By hypothesis, there is a DTM M ′ that decides L′ in poly-time. Convert M ′ to an exponential-time
DTM M to accept L.)

2.4 Function problems

So far we have considered only decision problems, i.e., problems that have yes/no answers. In practice,
however, we deal with problems that compute some quantities from the input string. For example, SAT
talks about the satisfiability of a Boolean function. We now frame the problem: if φ is satisfiable, compute
a satisfying assignment for φ. We call this new problem FSAT. It may turn out that these “compute
something” problems are more difficult than the corresponding decision versions. However, we have strong
results that justify concentrating on studies of decision problems only.

2.18 Theorem FSAT can be solved in (deterministic) poly-time if and only if SAT ∈ P.

We now formally introduce function problems.

2.19 Definition Let ρ ⊆ Σ∗ × Σ∗ be a relation (on Σ∗). ρ is said to be p o l y n o m i a l l y d e c i d a b l e ,
if {〈α, β〉 | (α, β) ∈ ρ} is in P. ρ is said to be p o l y n o m i a l l y b a l a n c e d , if whenever (α, β) ∈ ρ, we
have |β| 6 |α|k for some constant k ∈ N (depending on L but independent of α or β).

2.20 Theorem Let L ⊆ Σ∗. Then L ∈ NP if and only if there exists a polynomially decidable and
polynomially balanced relation ρL ⊆ Σ∗ × Σ∗ with L = {α | (α, β) ∈ ρL for some β}.

2.21 Definition Let L ∈ NP and ρL be as in Theorem 2.20. The f u n c t i o n p r o b l e m associated with
L is the following: If α ∈ L, compute some β with (α, β) ∈ ρL; if α /∈ L, return “no”. (Of course, such a
problem does not compute a “function” in the mathematical sense, since there may be several β for a given
α.) Let us denote by FL the function problem associated with L ∈ NP. We can now define the class:

FNP := {FL | L ∈ NP}.

FP is the subclass of FNP consisting of function problems that can be solved in deterministic poly-time.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

Page 6 of 6 17642 Computational Complexity

It is not known (but believed) that FP $ FNP. The problem FSAT of Theorem 2.18 is in FNP, but unlikely
to be in FP. One can define reduction between problems in FNP and also complete problems for the class
FNP. It can be shown that FSAT is FNP-complete. This implies that:

2.22 Theorem FP = FNP if and only if P = NP.

Some function problems have language Σ∗ and are not interesting in terms of their decidability. Such
problems are typically meant for computing some quantity and this computation makes sense for every
possible input. In this case, the relation ρL is important (and not the trivial language L).

2.23 Definition A problem ρL in FNP is called to t a l , if for every α ∈ Σ∗ there exists β with (α, β) ∈ ρL.
TFNP is the subclass of FNP consisting of total function problems.

2.24 Example (1) The total version TFACTORING of the integer factoring problem deals with the
computation of the prime factorization of the positive integer represented by the input α. Note that every
positive integer has a (unique) prime factorization. Thus the problem of deciding if a factorization exists is
not important; what is important is to compute it.

(2) The HAPPYNET problem on an undirected graph G = (V,E) is defined as follows. The vertices of
G are thought of as human beings and each edge (u, v) ∈ E is labeled by an integer (positive or negative)
weight w(u, v) indicating the extent to which the vertices u and v like (or dislike) one another. A state is a
map σ : V → {1,−1}. A vertex u ∈ V is said to be happy in a state σ, if σ(u)

∑
(u,v)∈E w(u, v)σ(v) > 0.

For any undirected graph G there exists a state in which every vertex is happy. The HAPPYNET problem
computes one such state given the graph G.

Problems in TFNP are believed to be easier than FNP-complete. The conjectured relationships among the
function problems are depicted in Figure 2.2, where all containments are believed to be proper.

Figure 2.2: Conjectured relationships among the complexity classes for function problems

FNP−complete

TFNP

FNP

FP

Exercises for Section 2.4

** 1. Consider the total version TTSP of TSP (Exercise 2.2.5), in which an optimal tour of the salesperson is to be
computed. Demonstrate that if TSP ∈ P, then TTSP has a poly-time algorithm.

* 2. Consider the total version TFACTORING of the integer factoring problem (Exercise 2.3.3), in which the prime
factorization of the input is to be computed. Deduce that if FACTORING ∈ P, then TFACTORING has a poly-
time algorithm.

3. Let a1, . . . , an be n positive integers with
∑n
i=1 ai < 2n − 1. Show that there exist disjoint nonempty subsets S and

T of {a1, . . . , an} with
∑
x∈S x =

∑
y∈T y. The problem of computing such subsets S and T is thus in TFNP. This

problem has no known poly-time algorithm.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India

