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Branch and Bound
 An algorithm design technique, primarily for solving hard 

optimization problems
 Guarantees that the optimal solution will be found
 Does not necessarily guarantee worst case polynomial time 

complexity
 But tries to ensure faster time on most instances

 Basic Idea
 Model the entire solution space as a tree
 Search for a solution in the tree systematically, eliminating parts 

of the tree from the search intelligently
 Important technique for solving many problems for which 

efficient algorithms (worst case polynomial time) are not 
known



Optimization Problems
 Set of input variables I
 Set of output variables O

 Values of the output variables define the solution space
 Set of constraints C over the variables
 Set of feasible solutions S

 Set of solutions that satisfy all the constraints
 Objective function F: S → R (also called cost function)

 Gives a value F(s) for each solution s ∈ S
 Optimal solution

 A solution s ∈ S for which F(s) is maximum among all s ∈ S 
(for a maximization problem) or minimum (for a minimization 
problem)



Example 
 Many problems that you have seen so far

 Minimum weight spanning tree, matrix chain multiplication, 
longest common subsequence, fractional knapsack problem, ….

 All these (that you have seen in Algorithms-1 course) have known 
efficient algorithms

 Graph Coloring
 Input: an undirected graph
 Output:  a color assigned to each vertex
 Constraint: no two adjacent vertices have the same color
 Objective function: no of colors used by a feasible solution
 Goal: Find a coloring that uses the minimum number of colors
 No efficient algorithm known for general graphs



 Bin Packing
 Input:  a set of items X = {x1, x2, ….xn} with volume {v1, v2, 

vn} respectively,  and set of bins B, each of volume V
 Output: an assignment of the items to bins (each item can be 

placed in exactly one bin)
 Constraint: the total volume of items placed in any bin must be 
≤ V

 Objective function: number of bins used
 Goal: find an assignment of items to bins that uses the minimum 

number of bins
 No efficient algorithm known

 Note that a maximization problem can be transformed into a 
minimization function (and vice-versa) by just changing the 
sign of the objective function





Solution Structure

 For many optimization problems, the solution can be 
expressed as a n-tuple <x1, x2, ….xn> where each xi is 
chosen from some finite set Si

 Let size of Si be mi
 Then size of the solution space = m1m2m3….mn
 Some of these solutions are feasible, some are infeasible
 Brute force approach

 Search the entire space for feasible solutions
 Compute the cost function for each feasible solution found
 Choose the one that maximizes/minimizes the objective 

function
 Problem: Solution space size may be too large



Example: 0-1 Knapsack Problem

 Given a set of n items 1, 2, …n with weights w1, w2, …, wn
and values v1, v2, vn respectively , and a knapsack with total 
weight capacity W, find the largest subset of items that can 
be packed into the knapsack such that the total value 
gained is maximized.

 Solution format <x1, x2,….,xn>
 xi = 1 if item i is chosen in the subset, 0 otherwise

 Feasible solution:∑ xiwi ≤ W

 Objective function F: ∑ xivi
 Optimal solution: feasible solution with maximum value of ∑ 

xivi
 Solution space size 2n





Example: Travelling Salesman Problem
 Given a complete weighted graph G = (V, E), find a 

Hamiltonian Cycle with the lowest total weight
 Suppose that the vertices are numbered 1, 2, …,|V|= n
 Solution format <x1, x2,….,xn>

 xi ∈ {1, 2, …,n} gives the i-th vertex visited in the cycle

 Feasible solution: xi ≠ xj for any i ≠ j
 Objective function F: ∑ 1 ≤ i < n w(xi, xi+1) + w(xn, x1), 

where w(i, j) is the weight of edge (i, j)
 Optimal solution: feasible solution with minimum value 

of objective function
 Solution space size (n-1)!





State Space Tree

 Represent the solution space as a tree
 Each edge represents a choice of one xi

 Level 0 to Level 1 edges show choice of x1
 Level 1 to Level 2 edges show choice of x2

 Level i − 1 to Level i edges show choice of xi
 Each internal node represents a partial solution

 Partitions the solution space into disjoint subspaces

 Leaf nodes represent the complete solution (may or may 
not be feasible)

 Models the complete solution being built by choosing 
one component at a time





Example: 0-1 Knapsack 
 Level 0 to Level 1 edges show choice of w1
 Level 1 to Level 2 edges show choice of w2
 Level i − 1 to Level i edges show choice of wi
 Level 0 (root) node partitions the solution space into 

those that contain w1 and those that do not contain w1
 For the subtree which has w1 chosen, Level 1 nodes 

partitions the subspace (w1 present) further into (w1 and 
w2 present) and (w1 present but w2 not present)

 Leaf nodes represent the solutions (the path from root to
leaf shows what items are chosen (edges marked 1 along 
the path)





Finding the Optimal Solution
 One possible approach

 Generate the state space tree, look at all solutions (leaf 
nodes),  find the feasible solutions, apply objective function 
on each feasible solution, and choose the optimal

 But generating the tree is as good as doing brute force 
search
 Will take huge space (to store the tree) and huge time (to 

generate all nodes)
 Need to do something better

 To reduce space, do not generate all nodes at once
 To reduce time, do not generate all nodes (how to decide?)

 We will first look at the problem of finding just one 
feasible solution to understand a basic technique



Finding One Feasible Solution



Basic Approach
 Expand the tree systematically in parts, stop when you 

find a  feasible solution
 Reduces space as whole tree is not generated at one go

 The parts that have been looked at already are not stored

 May reduce time for many instances as feasible solution 
may be found without generating the whole tree
 But in worst case, you may still have to generate all the nodes



 How to expand the tree?
 Start with root node
 Generate other nodes in some order

 DFS, BFS, ….
 Live node: a node which is generated but all children of 

which has not been generated
 Dead node:  A generated node which is not to be expanded 

(will see why later) or whose all children have been 
generated

 The different node generation orders will pick one live 
node to expand (generate its children) at one time

 E-node: The live node being expanded currently



Example: n-Queens Problem
 Consider a n×n board
 You have to place n queens on the n×n squares so that no 

two queens can attack each other, i.e., no two queens 
should be 
 In the same row
 In the same column
 In the same diagonal



One Solution for 8-queens

Courtesy: Computer Algorithms: E. Horowitz, S. Sahni, and S. Rajasekharan



 How to find a solution?
 Say queens are numbered 1 to n
 Rows and columns are also numbered from 1 to n
 Without loss of generality, assume that queen i is placed in 

row i
 So need to find the column in which each queen i needs to 

be placed
 Solution format: (x1, x2, ….xn) where xi gives the 

column no. that queen i is placed in 
 So xi ∈ {1, 2, 3, …., n}



State Space Tree for 4-Queens

Generated in DFS order (no. inside node shows order)

Courtesy: Computer Algorithms: E. Horowitz, S. Sahni, and S. Rajasekharan





 But do we need to explore the entire tree?
 Consider the node marked 3, corresponding to the choices 

(made so far) of x1 = 1, x2 = 2
 But this cannot lead to any feasible solution

 Queen 1 and 2 are on same diagonal
 Cannot be feasible irrespective of the consequent choice of 

x3, x4,….
 So while generating the tree, no need to generate the 

subtree rooted at node 3
 Many other such cases in the tree…
 Can prune (not generate) large parts of the tree, saving 

time



Pruned Tree

Courtesy: Computer Algorithms: E. Horowitz, S. Sahni, and S. Rajasekharan



Backtracking
 Systematic search of the state space tree with pruning

 Pruning done using bounding functions
 Tree generated using DFS order

 When a child C of the current E-node R is generated, C 
becomes the new E-node

 R will become the E-node again after subtree rooted at C is fully
explored

 At every step, apply the bounding function (a predicate) on a 
node to check if the subtree rooted at the node needs to be 
explored
 Do not generate the subtree rooted at the node if the bounding 

function returns false
 Find all feasible solutions (or stop at the first one if only one is 

needed)



Example: Subset Sum Problem

 Given a set S of n positive integers a1, a2, …an and a 
positive integer M, find a subset of S that sums to M 

 Solution format <x1, x2,….,xn>
 xi = 1 if ai is chosen in the subset, 0 otherwise

 Feasible solution: ∑ xiai = M
 Possible bounding functions at a node at Level i (so the 

path to the node is <x1, x2, x3, …., xi>)
 If ∑1 ≤ k ≤ i xkak > M return false
 If ∑1 ≤ k ≤ i xkak + ∑i+1 ≤ j ≤ n ak < M return false



Example: 0-1 Knapsack
 Possible bounding function at a node at Level i

 If ∑1 ≤ k ≤ i xkwk > W return false 

 Note that for 0-1 Knapsack, finding just one feasible 
solution does not make much sense
 Choosing any one item only (assuming trivially that each 

has weight < W) is a feasible solution, no need to do 
backtracking or any other thing

 We will see next that we will have to generate the tree to 
find the optimal solution
 So bounding function is still very useful
 We will augment this simple bounding function later



Some Notes on Backtracking
 While most definitions of backtracking specify DFS order 

generation of state-space tree, other definitions do not restrict
the order to DFS
 We will discuss other orders later in the lecture

 Backtracking can be applied to problems other than optimization 
problems also
 Just answer yes/no (decision problem)
 Find one/all feasible solution
 Some definitions actually restrict backtracking to non-optimization 

problems only, with branch and bound for optimization problems
 Forms the basis for state space search for optimization problems 

also
 Branch and bound uses backtracking with different tree 

generation order and augmented bounding function to prune the 
tree further for finding an optimal solution



Going Back to Finding the Optimal Solution: 
Branch and Bound



 Use similar methods as backtracking to generate the 
state space tree
 But need not be DFS order

 Use the bounding function to prune off parts of the tree
 Parts that do not contain any feasible solutions as before

 Current partial solution cannot lead to a feasible solution
 Parts that may contain feasible solutions but cannot contain 

an optimal solution
 Current partial solution cannot be extended to an optimal 

solution
 Use the value of the solution (objective function applied to 

the solution) for deciding this



Bounding Function
 Consider a maximization problem with solution 

structure <x1, x2, x3, …., xi> 
 Suppose you are at a node p at Level i

 So choices for  x1, x2, x3, …., xi has been made
 Suppose you already know of  a lower bound vlower on 

the value that can be achieved by an optimal solution
 Suppose you can also find an upper bound vupper(i+1) 

on the increment in value that can be achieved by 
extending the partial solution si with choices for xi+1 to 
xn



 Then, do not generate the subtree at p (kill p) if
F(si) + vupper(i+1) < vlower

 Even if you extend the current partial solution by making the 
remaining choices in the best possible manner to add 
maximum value, it still cannot beat the current best that you 
know, so definitely cannot lead to an optimal solution

 Can be used to prune the state space tree further
 In addition to removing  parts with no feasible solutions

 But how do we  find vlower and  vupper(i+1) ?





 Note that we have defined this for maximization 
problems. For minimization problems, the roles of upper 
and lower bounds get reversed
 vupper = known upper bound on optimal solution value
 vlower(i+1) = lower bound on increment in value of partial 

solution

 Do not generate subtree (kill node) if

F(si) + vlower(i+1) > vupper



Finding vlower

 Set an initial value from a feasible solution found by 
some method
 Solution found by a polynomial time approximation 

algorithm if one is known
 Solution found by  some fast heuristic algorithm for the 

problem if one is known
 Random sampling
 Any other fast method known to find a feasible solution for 

the problem
 If no other method can be found , set to 0



 Update dynamically as the tree is generated
 If a partial/full feasible solution si is found, then set vlower

= max(vlower,  F(si) + cmini+1) where cmini+1 is the 
minimum increment in the value of the objective function that
can be achieved by extending the solution with choices of xi+1 

to xn
 Note that the partial solution must be feasible
 Example: 0-1 Knapsack
 F(si) = ∑1 ≤ k ≤ i xkvk

 cmini+1 = 0 (can extend the solution at least by not choosing 
any other item, will still stay feasible)
 Can find better estimates at the cost of doing more work



Finding vupper(i +1)

 Can be found by different means
 Example: 0-1 Knapsack

 Solve the fractional knapsack problem on the remaining items 
(i+1 to n) with the remaining Knapsack capacity 

(W − ∑1 ≤ k ≤ i xkwk)
 You cannot get more value from the remaining items than 

this, as fractional knapsack can be solved optimally (in 
polynomial time), so this is an upper bound



Example: Travelling Salesman Problem
 Solution structure <x1, x2,….,xn>

 xi ∈ {1, 2, …,n} gives the i-th vertex visited in the cycle

 It does not matter where you start, so choose x1 = 1
 vupper = ∞ (or set from solution of known 

approximation/heuristic algorithms for TSP)
 F(si) = w(1, x2)  + ∑ 2 ≤ k < i w(xk, xk+1)
 vlower(i+1) = (n – i + 1)wmin where wmin is the 

minimum weight of any edge in the graph
 Bounding Function:

xi ∈{1, x2, x3,….,xi-1})  OR  
F(si) + vlower(i+1) > vupper





Tree Generation Orders
 DFS order (mostly used in backtracking)
 FIFO Branch and Bound/BFS

 Same as BFS. A E-node node remains an E-node until all its 
children are either generated or killed (due to pruning)

 Implemented the same way as BFS with a queue. Node at 
head of queue is the next E-node

 LIFO Branch and Bound/D-Search
 Similar to BFS in that all nodes of an E-node are generated 

first
 Different from BFS in that the generated nodes are placed 

in a stack instead of in a queue



Tree of 0-1 Knapsack with LIFO B&B

Courtesy: Computer Algorithms: E. Horowitz, S. Sahni, and S. Rajasekharan



 Least Cost (LC) Search
 Ranks the live nodes according to some ranking function
 Chooses the one with the highest value
 Implemented with priority queue of live nodes
 Ranking function can be based on different things

 Current value of the objective function on the partial 
solution

 Estimate of the objective function value achievable by 
generating the subtree rooted at that node 

 Estimate of effort needed to find an optimal solution in the 
subtree

 Different ways to estimate and use these, we will not do here



Summary
 Branch and Bound can solve many hard optimization 

problems very efficiently for most instances
 Design of good bounding functions/ranking functions is 

very important
 However, the worst case time complexity may still not 

be polynomial
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