
Branch and Bound

CS31005: Algorithms-II
Autumn 2020
IIT Kharagpur

Branch and Bound
 An algorithm design technique, primarily for solving hard

optimization problems
 Guarantees that the optimal solution will be found
 Does not necessarily guarantee worst case polynomial time

complexity
 But tries to ensure faster time on most instances

 Basic Idea
 Model the entire solution space as a tree
 Search for a solution in the tree systematically, eliminating parts

of the tree from the search intelligently
 Important technique for solving many problems for which

efficient algorithms (worst case polynomial time) are not
known

Optimization Problems
 Set of input variables I
 Set of output variables O

 Values of the output variables define the solution space
 Set of constraints C over the variables
 Set of feasible solutions S

 Set of solutions that satisfy all the constraints
 Objective function F: S → R (also called cost function)

 Gives a value F(s) for each solution s ∈ S
 Optimal solution

 A solution s ∈ S for which F(s) is maximum among all s ∈ S
(for a maximization problem) or minimum (for a minimization
problem)

Example
 Many problems that you have seen so far

 Minimum weight spanning tree, matrix chain multiplication,
longest common subsequence, fractional knapsack problem, ….

 All these (that you have seen in Algorithms-1 course) have known
efficient algorithms

 Graph Coloring
 Input: an undirected graph
 Output: a color assigned to each vertex
 Constraint: no two adjacent vertices have the same color
 Objective function: no of colors used by a feasible solution
 Goal: Find a coloring that uses the minimum number of colors
 No efficient algorithm known for general graphs

 Bin Packing
 Input: a set of items X = {x1, x2, ….xn} with volume {v1, v2,

vn} respectively, and set of bins B, each of volume V
 Output: an assignment of the items to bins (each item can be

placed in exactly one bin)
 Constraint: the total volume of items placed in any bin must be
≤ V

 Objective function: number of bins used
 Goal: find an assignment of items to bins that uses the minimum

number of bins
 No efficient algorithm known

 Note that a maximization problem can be transformed into a
minimization function (and vice-versa) by just changing the
sign of the objective function

Solution Structure

 For many optimization problems, the solution can be
expressed as a n-tuple <x1, x2, ….xn> where each xi is
chosen from some finite set Si

 Let size of Si be mi
 Then size of the solution space = m1m2m3….mn
 Some of these solutions are feasible, some are infeasible
 Brute force approach

 Search the entire space for feasible solutions
 Compute the cost function for each feasible solution found
 Choose the one that maximizes/minimizes the objective

function
 Problem: Solution space size may be too large

Example: 0-1 Knapsack Problem

 Given a set of n items 1, 2, …n with weights w1, w2, …, wn
and values v1, v2, vn respectively , and a knapsack with total
weight capacity W, find the largest subset of items that can
be packed into the knapsack such that the total value
gained is maximized.

 Solution format <x1, x2,….,xn>
 xi = 1 if item i is chosen in the subset, 0 otherwise

 Feasible solution:∑ xiwi ≤ W

 Objective function F: ∑ xivi
 Optimal solution: feasible solution with maximum value of ∑

xivi
 Solution space size 2n

Example: Travelling Salesman Problem
 Given a complete weighted graph G = (V, E), find a

Hamiltonian Cycle with the lowest total weight
 Suppose that the vertices are numbered 1, 2, …,|V|= n
 Solution format <x1, x2,….,xn>

 xi ∈ {1, 2, …,n} gives the i-th vertex visited in the cycle

 Feasible solution: xi ≠ xj for any i ≠ j
 Objective function F: ∑ 1 ≤ i < n w(xi, xi+1) + w(xn, x1),

where w(i, j) is the weight of edge (i, j)
 Optimal solution: feasible solution with minimum value

of objective function
 Solution space size (n-1)!

State Space Tree

 Represent the solution space as a tree
 Each edge represents a choice of one xi

 Level 0 to Level 1 edges show choice of x1
 Level 1 to Level 2 edges show choice of x2

 Level i − 1 to Level i edges show choice of xi
 Each internal node represents a partial solution

 Partitions the solution space into disjoint subspaces

 Leaf nodes represent the complete solution (may or may
not be feasible)

 Models the complete solution being built by choosing
one component at a time

Example: 0-1 Knapsack
 Level 0 to Level 1 edges show choice of w1
 Level 1 to Level 2 edges show choice of w2
 Level i − 1 to Level i edges show choice of wi
 Level 0 (root) node partitions the solution space into

those that contain w1 and those that do not contain w1
 For the subtree which has w1 chosen, Level 1 nodes

partitions the subspace (w1 present) further into (w1 and
w2 present) and (w1 present but w2 not present)

 Leaf nodes represent the solutions (the path from root to
leaf shows what items are chosen (edges marked 1 along
the path)

Finding the Optimal Solution
 One possible approach

 Generate the state space tree, look at all solutions (leaf
nodes), find the feasible solutions, apply objective function
on each feasible solution, and choose the optimal

 But generating the tree is as good as doing brute force
search
 Will take huge space (to store the tree) and huge time (to

generate all nodes)
 Need to do something better

 To reduce space, do not generate all nodes at once
 To reduce time, do not generate all nodes (how to decide?)

 We will first look at the problem of finding just one
feasible solution to understand a basic technique

Finding One Feasible Solution

Basic Approach
 Expand the tree systematically in parts, stop when you

find a feasible solution
 Reduces space as whole tree is not generated at one go

 The parts that have been looked at already are not stored

 May reduce time for many instances as feasible solution
may be found without generating the whole tree
 But in worst case, you may still have to generate all the nodes

 How to expand the tree?
 Start with root node
 Generate other nodes in some order

 DFS, BFS, ….
 Live node: a node which is generated but all children of

which has not been generated
 Dead node: A generated node which is not to be expanded

(will see why later) or whose all children have been
generated

 The different node generation orders will pick one live
node to expand (generate its children) at one time

 E-node: The live node being expanded currently

Example: n-Queens Problem
 Consider a n×n board
 You have to place n queens on the n×n squares so that no

two queens can attack each other, i.e., no two queens
should be
 In the same row
 In the same column
 In the same diagonal

One Solution for 8-queens

Courtesy: Computer Algorithms: E. Horowitz, S. Sahni, and S. Rajasekharan

 How to find a solution?
 Say queens are numbered 1 to n
 Rows and columns are also numbered from 1 to n
 Without loss of generality, assume that queen i is placed in

row i
 So need to find the column in which each queen i needs to

be placed
 Solution format: (x1, x2, ….xn) where xi gives the

column no. that queen i is placed in
 So xi ∈ {1, 2, 3, …., n}

State Space Tree for 4-Queens

Generated in DFS order (no. inside node shows order)

Courtesy: Computer Algorithms: E. Horowitz, S. Sahni, and S. Rajasekharan

 But do we need to explore the entire tree?
 Consider the node marked 3, corresponding to the choices

(made so far) of x1 = 1, x2 = 2
 But this cannot lead to any feasible solution

 Queen 1 and 2 are on same diagonal
 Cannot be feasible irrespective of the consequent choice of

x3, x4,….
 So while generating the tree, no need to generate the

subtree rooted at node 3
 Many other such cases in the tree…
 Can prune (not generate) large parts of the tree, saving

time

Pruned Tree

Courtesy: Computer Algorithms: E. Horowitz, S. Sahni, and S. Rajasekharan

Backtracking
 Systematic search of the state space tree with pruning

 Pruning done using bounding functions
 Tree generated using DFS order

 When a child C of the current E-node R is generated, C
becomes the new E-node

 R will become the E-node again after subtree rooted at C is fully
explored

 At every step, apply the bounding function (a predicate) on a
node to check if the subtree rooted at the node needs to be
explored
 Do not generate the subtree rooted at the node if the bounding

function returns false
 Find all feasible solutions (or stop at the first one if only one is

needed)

Example: Subset Sum Problem

 Given a set S of n positive integers a1, a2, …an and a
positive integer M, find a subset of S that sums to M

 Solution format <x1, x2,….,xn>
 xi = 1 if ai is chosen in the subset, 0 otherwise

 Feasible solution: ∑ xiai = M
 Possible bounding functions at a node at Level i (so the

path to the node is <x1, x2, x3, …., xi>)
 If ∑1 ≤ k ≤ i xkak > M return false
 If ∑1 ≤ k ≤ i xkak + ∑i+1 ≤ j ≤ n ak < M return false

Example: 0-1 Knapsack
 Possible bounding function at a node at Level i

 If ∑1 ≤ k ≤ i xkwk > W return false

 Note that for 0-1 Knapsack, finding just one feasible
solution does not make much sense
 Choosing any one item only (assuming trivially that each

has weight < W) is a feasible solution, no need to do
backtracking or any other thing

 We will see next that we will have to generate the tree to
find the optimal solution
 So bounding function is still very useful
 We will augment this simple bounding function later

Some Notes on Backtracking
 While most definitions of backtracking specify DFS order

generation of state-space tree, other definitions do not restrict
the order to DFS
 We will discuss other orders later in the lecture

 Backtracking can be applied to problems other than optimization
problems also
 Just answer yes/no (decision problem)
 Find one/all feasible solution
 Some definitions actually restrict backtracking to non-optimization

problems only, with branch and bound for optimization problems
 Forms the basis for state space search for optimization problems

also
 Branch and bound uses backtracking with different tree

generation order and augmented bounding function to prune the
tree further for finding an optimal solution

Going Back to Finding the Optimal Solution:
Branch and Bound

 Use similar methods as backtracking to generate the
state space tree
 But need not be DFS order

 Use the bounding function to prune off parts of the tree
 Parts that do not contain any feasible solutions as before

 Current partial solution cannot lead to a feasible solution
 Parts that may contain feasible solutions but cannot contain

an optimal solution
 Current partial solution cannot be extended to an optimal

solution
 Use the value of the solution (objective function applied to

the solution) for deciding this

Bounding Function
 Consider a maximization problem with solution

structure <x1, x2, x3, …., xi>
 Suppose you are at a node p at Level i

 So choices for x1, x2, x3, …., xi has been made
 Suppose you already know of a lower bound vlower on

the value that can be achieved by an optimal solution
 Suppose you can also find an upper bound vupper(i+1)

on the increment in value that can be achieved by
extending the partial solution si with choices for xi+1 to
xn

 Then, do not generate the subtree at p (kill p) if
F(si) + vupper(i+1) < vlower

 Even if you extend the current partial solution by making the
remaining choices in the best possible manner to add
maximum value, it still cannot beat the current best that you
know, so definitely cannot lead to an optimal solution

 Can be used to prune the state space tree further
 In addition to removing parts with no feasible solutions

 But how do we find vlower and vupper(i+1) ?

 Note that we have defined this for maximization
problems. For minimization problems, the roles of upper
and lower bounds get reversed
 vupper = known upper bound on optimal solution value
 vlower(i+1) = lower bound on increment in value of partial

solution

 Do not generate subtree (kill node) if

F(si) + vlower(i+1) > vupper

Finding vlower

 Set an initial value from a feasible solution found by
some method
 Solution found by a polynomial time approximation

algorithm if one is known
 Solution found by some fast heuristic algorithm for the

problem if one is known
 Random sampling
 Any other fast method known to find a feasible solution for

the problem
 If no other method can be found , set to 0

 Update dynamically as the tree is generated
 If a partial/full feasible solution si is found, then set vlower

= max(vlower, F(si) + cmini+1) where cmini+1 is the
minimum increment in the value of the objective function that
can be achieved by extending the solution with choices of xi+1

to xn
 Note that the partial solution must be feasible
 Example: 0-1 Knapsack
 F(si) = ∑1 ≤ k ≤ i xkvk

 cmini+1 = 0 (can extend the solution at least by not choosing
any other item, will still stay feasible)
 Can find better estimates at the cost of doing more work

Finding vupper(i +1)

 Can be found by different means
 Example: 0-1 Knapsack

 Solve the fractional knapsack problem on the remaining items
(i+1 to n) with the remaining Knapsack capacity

(W − ∑1 ≤ k ≤ i xkwk)
 You cannot get more value from the remaining items than

this, as fractional knapsack can be solved optimally (in
polynomial time), so this is an upper bound

Example: Travelling Salesman Problem
 Solution structure <x1, x2,….,xn>

 xi ∈ {1, 2, …,n} gives the i-th vertex visited in the cycle

 It does not matter where you start, so choose x1 = 1
 vupper = ∞ (or set from solution of known

approximation/heuristic algorithms for TSP)
 F(si) = w(1, x2) + ∑ 2 ≤ k < i w(xk, xk+1)
 vlower(i+1) = (n – i + 1)wmin where wmin is the

minimum weight of any edge in the graph
 Bounding Function:

xi ∈{1, x2, x3,….,xi-1}) OR
F(si) + vlower(i+1) > vupper

Tree Generation Orders
 DFS order (mostly used in backtracking)
 FIFO Branch and Bound/BFS

 Same as BFS. A E-node node remains an E-node until all its
children are either generated or killed (due to pruning)

 Implemented the same way as BFS with a queue. Node at
head of queue is the next E-node

 LIFO Branch and Bound/D-Search
 Similar to BFS in that all nodes of an E-node are generated

first
 Different from BFS in that the generated nodes are placed

in a stack instead of in a queue

Tree of 0-1 Knapsack with LIFO B&B

Courtesy: Computer Algorithms: E. Horowitz, S. Sahni, and S. Rajasekharan

 Least Cost (LC) Search
 Ranks the live nodes according to some ranking function
 Chooses the one with the highest value
 Implemented with priority queue of live nodes
 Ranking function can be based on different things

 Current value of the objective function on the partial
solution

 Estimate of the objective function value achievable by
generating the subtree rooted at that node

 Estimate of effort needed to find an optimal solution in the
subtree

 Different ways to estimate and use these, we will not do here

Summary
 Branch and Bound can solve many hard optimization

problems very efficiently for most instances
 Design of good bounding functions/ranking functions is

very important
 However, the worst case time complexity may still not

be polynomial

	Branch and Bound
	Branch and Bound
	Optimization Problems
	Example
	Slide Number 5
	Slide Number 6
	Solution Structure
	Example: 0-1 Knapsack Problem
	Slide Number 9
	Example: Travelling Salesman Problem
	Slide Number 11
	State Space Tree
	Slide Number 13
	Example: 0-1 Knapsack
	Slide Number 15
	Finding the Optimal Solution
	Finding One Feasible Solution
	Basic Approach
	Slide Number 19
	Example: n-Queens Problem
	One Solution for 8-queens
	Slide Number 22
	State Space Tree for 4-Queens
	Slide Number 24
	Slide Number 25
	Pruned Tree
	Backtracking
	Example: Subset Sum Problem
	Example: 0-1 Knapsack
	Some Notes on Backtracking
	Going Back to Finding the Optimal Solution: Branch and Bound
	Slide Number 32
	Bounding Function
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Finding vlower
	Slide Number 38
	Finding vupper(i +1)
	Example: Travelling Salesman Problem
	Slide Number 41
	Tree Generation Orders
	Tree of 0-1 Knapsack with LIFO B&B
	Slide Number 44
	Summary
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

