Stable Matching

CS31005: Algorithms-II
Autumn 2020
IIT Kharagpur

Stable Matching

- A type of perfect matching in a complete bipartite graph
- Posed usually as the "Stable Marriage Problem"
- Well known for application to the problem of assigning doctors to hospitals for residencies (internships)
- Doctors list the hospitals in order of preference
- Hospitals list the students in order of preference
- Find stable matching between the doctors and the hospitals
- Unstable pair: Suppose doctor D1 is assigned to H1 and D2 to H 2 , but D1has higher preference for H 2 than H 1 and H 2 has higher preference for D1 over D2
- Can make D1 move to H2, who will welcome the student

The Stable Marriage Problem

- There are n men and n women, all unmarried
- Each has a preference list giving a relative preference of each person of the opposite sex
- Find a matching between the men and the women such that
- Each man is matched to exactly one woman and each woman is matched to exactly one man (perfect matching)
- There is no unstable pair (an unmatched pair of a man and a woman who both prefer each other over whoever they are assigned to in the matching)
- Stable matching - perfect matching with no unstable pair

Example

- 3 men m1, m2, m3 and 3 women w1, w2, w3
- Preference List (highest to lowest):

$$
\begin{array}{ll}
\mathrm{m} 1: \mathrm{w} 2, \mathrm{w} 1, \mathrm{w} 3 & \mathrm{w} 1: \mathrm{m} 2, \mathrm{~m} 1, \mathrm{~m} 3 \\
\mathrm{~m} 2: \mathrm{w} 1, \mathrm{w} 3, \mathrm{w} 2 & \mathrm{w} 2: \mathrm{m} 1, \mathrm{~m} 3, \mathrm{~m} 2 \\
\mathrm{~m} 3: \mathrm{w} 1, \mathrm{w} 3, \mathrm{w} 2 & \mathrm{w} 3: \mathrm{m} 2, \mathrm{~m} 1, \mathrm{~m} 3
\end{array}
$$

- Stable matching: (m1, w2), (m2, w1), (m3, w3)
- An unstable matching: (m1, w1), (m2, w2), (m3, w3)
- The unmatched pair (m1, w2) is unstable, as both m1 and w2 prefer each other over their current matchings

Gale-Shapely Algorithm

- Proposed by Gale and Shapely in 1962
- Lloyd Shapely was awarded the Nobel Prize in Economics in 2012 partly for this
- Showed that a stable matching always exists and gave an algorithm to find it
- We will denote the status of each man and woman as free or matched
- A matched pair of a man m and woman w will be denoted by (m, w)
- Let M denote the set of matched pairs

The Algorithm

Set initial status of all men and women as free while (some man m is free)
$\mathrm{w}=$ first woman on m's list $\quad / * \mathrm{~m}$ proposes to $\mathrm{w} * /$
if (w is free)
add (m, w) to M /* w accepts m's proposal */
set status of m and w to matched
else if (($\left.m^{\prime}, w\right)$ is in M and w has higher preference for m to $\left.m^{\prime}\right)$ $/ * \mathrm{~m}$ is better match for w , so w breaks engagement with m ' and gets engaged with $\mathrm{m} . \mathrm{m}$ ' becomes free again */ add (m, w) to M and remove ($\mathrm{m}^{\prime}, \mathrm{w}$) from M set status of m to matched and status of m ' to free
else $/ *$ w rejects m , nothing else to do $* /$
remove w from m's list $/ *$ each man proposes to a woman only once */

Example

Preferences:

$$
\begin{array}{ll}
m 1: w 1, w 3, w 2 & w 1: m 2, m 1, m 3 \\
m 2: w 1, w 2, w 3 & w 2: m 3, m 1, m 2 \\
m 3: w 1, w 3, w 2 & w 3: m 1, m 2, m 3
\end{array}
$$

We will use green to indicate status free and blue to indicate status matched

Initial status: m1, m2, m3, w1, w2, w3

Action	M	Description	Status
$\mathrm{m} 1 \rightarrow \mathrm{w} 1$	(m1, w1)	w1 accepts m1	$\begin{aligned} & \text { m1, m2, m3, } \\ & \text { w1, w2, w3 } \end{aligned}$
$\mathrm{m} 2 \rightarrow \mathrm{w} 1$	(m2, w1)	w1 breaks from m 1 and accepts $\mathbf{m} 2$	$\begin{aligned} & \mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \\ & \mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3 \end{aligned}$
$\mathrm{m} 3 \rightarrow \mathrm{w} 1$	(m2, w1)	w1 rejects m3	$\begin{aligned} & \mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \\ & \mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3 \end{aligned}$
$\mathrm{m} 3 \rightarrow \mathrm{w} 3$	(m2, w1), (m3, w3)	w3 accepts m3	$\begin{aligned} & \mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \\ & \mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3 \end{aligned}$
$\mathrm{m} 1 \rightarrow \mathrm{w} 3$	(m2, w1), (m1, w3)	w3 breaks from m3 and accepts m1	$\begin{aligned} & \mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \\ & \mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3 \end{aligned}$
$\mathrm{m} 3 \rightarrow \mathrm{w} 2$	$\begin{gathered} (\mathrm{m} 2, \mathrm{w} 1),(\mathrm{m} 1, \mathrm{w} 3) \\ (\mathrm{m} 3, \mathrm{w} 2) \end{gathered}$	w2 accepts m3	$\begin{aligned} & \mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \\ & \mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3 \end{aligned}$

Some Observations

- Men propose to their highest preference woman first
- Once a woman is matched, she never becomes free, can only change from a lower preference partner to a higher preference partner
- All men and women are eventually matched
- Because if not, suppose man m is not matched. Then there must be a woman w also not matched. But then whas never received a proposal (or it would have matched with the first one and then never get unmatched). This is a contradiction as m has proposed to everyone since he is unmatched.

Proof of Correctness

Theorem: When the algorithm terminates, the set M contains a stable matching
Proof: Suppose that there is an unstable pair (m,w). Let their current matchings be ($\mathrm{m}, \mathrm{w}^{\prime}$) and (m', w). Then there are two possibilities:

- m has never proposed to w: But then, m must have higher preference for w ' than w, so (m, w) is not an unstable pair.
- m has proposed to w: But then, w must have rejected m (either at the time of the proposal, or later when she got a proposal from a higher preference man). So whas higher preference for m^{\prime} than m . So (m, w) is not an unstable pair.
- Will it terminate?
- Yes, because a man proposes to a woman at most once
- Time complexity $=\mathrm{O}\left(\mathrm{n}^{2}\right)$
- The is fine, but Gale-Shapely algorithm requires
- No. of men $=$ No. of women
- All men to give preference to all women and vice-versa.
- What if not satisfied (ex. In the resident matching problem, a doctor may not give preference for all hospitals)
- Not a big problem
- Add dummy nodes to make both sides same as before
- If m has not given preference for w (or vice-versa), add a dummy preference of m for w lower than any other preference m has actually given
- In the final matching, throw away any edge that uses either a dummy node or a dummy preference
- An interesting observation
- The stable matching found by the Gayle-Shapely algorithm when men propose first is man-optimal
- Each man gets his highest preference partner subject to the stability constraint
- More precisely: Consider any man m. Then a woman wis a valid partner of m if there exists at least one stable matching in which m is matched with w. Let $w_{\text {highest }}$ be the highest ranked valid partner of m (highest in m's preference list for women). Then in the stable matching produced by the GayleShapely algorithm when men propose first, m is paired with ${ }^{w}$ highest
- Note that "man" and "woman" are just placeholders here, you get a woman-optimal matching if women propose to men first
- Important it practice, as you can make the algorithm favor one set over the other by choosing where to start from
- For example, if the hospitals "propose" first, they are benefitted more over the students
- Get their highest choice possible subject to stability constraint

A Related Problem

- Stable Roommate problem
- Set of $2 n$ people, each of whom rank everyone else in order of preference. Find a perfect matching (a disjoint set of n pairs) such that there is no unstable pair.
- An example is assigning roommates in allocating hostel rooms (double bed rooms)
- We will do not do this, not in syllabus

