
Edmonds-Karp Algorithm 

y Proposed in 1972 
y Almost same as Ford-Fulkerson 
y Main difference: Uses BFS to find augmenting paths in 

residual graph instead of DFS 
y You can prove that 

y If the Edmonds-Karp algorithm is run on a flow network G = 
(V, E) with source s and sink t, then for all vertices  v � V – {s, 
t}, the shortest distance Af(s, v) in the residual network Gf 
increases monotonically with each flow augmentation 

y The total number of flow augmentations performed by the 
Edmonds-Karp algorithm is O(VE) 

y This gives time complexity of Edmonds-Karp as O(VE2), as 
BFS can be done in O(E) 



What if there are multiple sources and 

sink? 

y Suppose there are multiple sources s1, s2, s3,..sp and 
multiple sinks t1, t2, t3, ….tq 

y How do we maximize the sum of the flows from all the 
sources to all the sinks? 

y Can easily use the standard maximum flow problem 
y Add a “supersource” s with edge (s, sj) from s to all sources 

sj ZLWK�FDSDFLW\�� 
y Add a “supersink” t with edge (tj, t) from all sinks tj to t 

with FDSDFLW\�� 
y Solve the maximum flow problem with s as source and t as 

sink 
 





Application: Maximum Cardinality 

Bipartite Matching 

y Bipartite Graph: an undirected  graph G = (V, E) such 
that the vertex set can be partitioned V = L � R where 
L and R are disjoint and there is no edge between two 
vertices in L or two vertices in R 

y A matching in an undirected graph G = (V, E) is a subset 
of edges M � E, such that for all vertices v � V, at most 
one edge of M is incident on v. 

y A maximum cardinality matching is a matching with 
maximum number of edges among all possible matchings 
y Also simply called maximum matching for unweighted 

graphs 

 



L R 

(a)A matching with cardinality 2 
(b) A maximum matching with cardinality 3 

(a) 
L R 

(b) 



y Given the undirected bipartite graph G = (V, E) with 
partitions L and R, create a flow network G’ = (V’, E’) 
as follows 
y Add two new vertices s, t. So V’ = V U {s, t} 

y For each node u in L, add a directed edge (s,u) with 
capacity 1 to E’ 

y For each node v in R, add a directed edge (v,t) with 
capacity 1 to E’ 

y For each edge (u,v) in E with u in L and v in R, add a 
directed edge (u, v) with capacity 1 to E’ 

 



L R 
L R 

s t 

All capacities are 1 



y Now solve the maximum flow problem from s to t in G’ 

y The edges of G with corresponding edges in G’ with 
flow = 1 correspond to the maximum matching 

s t 

Maximum flow found 
Corresponding Maximum 
Matching 



Application: Edge Connectivity 

y Given an undirected graph G = (V, E), edge connectivity 
of G is the minimum number of edges that have to be 
removed to disconnect the graph 
y A graph is called k-edge-connected if its edge connectivity is 

at least k 

y Problem: Find the edge connectivity of a given undirected 
graph  

y Important practical problem in various forms for different 
types of network design 
y Example: to avoid disruption in a computer network, need 

to ensure that a small number of link failures cannot 
disconnect the network 



y We will use the maximum flow problem 
y We know that the maximum flow is equal to the capacity 

of the minimum (S,T) cut 
y So if we set all capacities to 1, the maximum flow value 

gives the minimum number of edges that goes across any 
cut (S,T),  and so, the minimum number of edges that 
needs to be removed so that there is no path from s to t 

y But the flow network is a directed graph, we need to 
solve it for an undirected graph 
y Easy. Maximum flow algorithms work on undirected 

graphs simply by converting it first to a directed graph, 
with each undirected edge replaced by two directed edges 

 



y We also need to consider disconnection of any two 
vertices, not just two specified ones like s and t 
y So (u,v)-cuts for any two vertices u and v 

y Simple solution: 

y For each pair of vertices (u,v), set s=u, t=v and find the 
minimum cut size by solving the maximum flow problem 

y Take the minimum over all (u,v) pairs 

y Time complexity = no. of distinct pairs × max-flow time 

  = O(|V|2) × O(|V||E|2) (using Edmonds-
Karp) 

  = O(|V|3|E|2) 

y  Can do better, no need to consider all pairs 



Input: Connected graph G = (V, E) 
 

choose any vertex p in V 
min_size = |E| 
for all vertices q ��S�GR 
ILQG�maxflow 0�LQ�GLUHFWHG�JUDSK�*·� ��9��(·� 
   ZKHUH�(·� �^��X�Y����Y�X��_��X�Y��LQ�(�` 
   V� �S��W� �T��DQG�DOO�FDSDFLWLHV� �� 
min_size  �PLQ��min_size��0� 

HGJH�FRQQHFWLYLW\�RI�*� �min_size 
 

Why is it sufficient to just find edge-connnectivity between a fixed p 
and all other vertices (and not between all pairs of vertices)? 

Time Complexity = (|V|2|E|2)   (using Edmonds-Karp) 

 



Preflow-Push Method 

y Also called Push-Relabel method as it is based on two 
basic operations, push and relabel 

y Main difference from Ford-Fulkerson based algorithms 
y Do not need to maintain the flow-conservation property 

throughout the execution 
y Total inflow at a vertex can be greater than total outflow 

from it in intermediate steps 

y But in the final solution, they must be the same as before 



y Constraints satisfied by f : V × V o R in intermediate 
steps of preflow-push: 
y Capacity constraint : For all u, v �V, f(u,v����F�u,v) 

     (same as before) 

y Skew symmetry : For all u, v �V, f(u,v) =  – f(v,u)  
     (same as before) 

y Flow constraint: For all v � V – {s}, �u�V f(u,v������ 
         �5HOD[HG��DOORZV�QHW�IORZ�LQWR�Y�WR�EH�JUHDWHU�WKDQ��� 

y Excess flow into v, e(v) = net flow into v = �v�V f(u,v) 

y A vertex is called active or overflowing LI�H�Y��!�� 

y f is called a preflow 
 



An Example Preflow 

y e(u) = 2 (active) 

y e(v) = 4 (active) 

y e(w) = 2 (active) 

y e�[�� �� 
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Basic Idea 

y Think of the vertices at different heights 
y ,QLWLDOO\�V�LV�DW�KHLJKW�_9_�DQG�DOO�RWKHUV�DW�KHLJKW�� 

y Think that each vertex has an arbitrarily large temporary 
storage 

y Flow is pushed only downhill, from a vertex with higher 
height to a vertex with lower height 

y Start the algorithm by pushing as much flow as possible from 
s to all its outgoing edges (i.e., push up to capacity of each 
edge from s) 
y Initial preflow 

y The flow pushed first gets stored in the storage of the vertices 
at the other end 



Initial Preflow 

y e(u) = 16 (active) 

y e(v) = 13 (active) 

y e�Z�� �� 

y e�[�� �� 
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y Any other vertex u pushes this flow along each edge 
whenever possible (if the vertex v at the other end of the 
edge is at a lower height, i.e, is downhill, and the edge 
(u,v) is not saturated) 
y PUSH operation 

y What if no such vertex v is found? 
y All vertices at the other end of outgoing edges have height 
��WKLV�QRGH·V�KHLJKW 

y ,Q�WKLV�FDVH��LQFUHDVH�YHUWH[�X·V�KHLJKW�E\�����PLQLPXP�
height of any vertex at other end of an unsaturated edge 

y RELABEL operation 



y Continue until flow cannot be pushed forward anymore  
y All edges across the minimum cut get saturated 

y But now you may have vertices with excess flow left in 
them 

y Push this flow back towards s  
y RELABEL to heights greater than |V| 
y Eventually all excess flows go out through s (whose height 

always stays at |V|) 

y The final flow satisfies the flow conservation constraint at 
each vertex 

y So two types of operation, PUSH and RELABEL 
y This  is why preflow-push method is also called the push-

relabel method 

 



The Height Function 

y The same notion of residual capacity cf and residual graph 
Gf  as before is also used here 

y Given a preflow f, a function h: V o N is a height 
function if it satisfies the following properties: 
y h(s) = |V| 

y K�W�� �� 

y h�X������K�Y������IRU�DQ\�UHVLGXDO�HGJH��u,v) � Ef  

 

 



y It is usually called the distance function, as it gives a 
lower bound on the distance from u to t in Gf 
y The text uses the term height to relate to downhill-uphill 

analogy, so let us use it also 

y Note that the definition implies that given any preflow f, 
IRU�DQ\�WZR�YHUWLFHV�X��Y��LI�K�X��!�K�Y�������WKHQ��u,v) is 

not an edge in the residual graph Gf 
  

 



PUSH Operation 

y PUSH(u,v) 

 Precondition:  

  H�X��!����L�H���X�LV�DFWLYH� 

  cf(u,v��!�� 

  K�X�� �K�Y����� 

 Action: 

  Let df(u,v) = min(e(u), cf(u,v))  

  Push df(u,v) amount of flow from u to v 

y PUSH is saturating if cf(u,v�� ���DIWHU�WKH�386+��
otherwise non-saturating 





RELABEL Operation 

y RELABEL(u) 

 Precondition: 

  H�X��!����L�H���X�LV�DFWLYH� 

  K�X����K�Y��IRU�DOO�HGJHV��u,v) � Ef 

 Action: 

  K�X�� �����PLQ^K�Y�_��u,v) � Ef} 

 

y Note that h(u) never decreases for any vertex u 





An Important Property 

For any active vertex u, either a PUSH or a RELABEL 
operation must be applicable 

 

y Why? 
y If PUSH operation is not applicable, then for all residual 

edges (u,v) � Ef��K�X�����K�Y����� 
y 1RWH�WKDW�K�X��FDQQRW�EH�!�WKDQ�K�Y������E\�defn. of h 

y 6R�K�X����K�Y� 

y But then a RELABEL operation is applicable to u 

 

 



Generic Preflow-Push Algorithm 





Example 
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PUSH(w, t) 
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PUSH(u,v) 
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PUSH(v,x) 
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PUSH(x,w) 
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RELABEL(x) 
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PUSH(x,v) 
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No active node, so stop 
Maximum flow |f| = 23 



Proof of Correctness (Outline) 

y Claim 1: Vertex heights never decrease 
y PUSH does not change h, and RELABEL only increases it 

y Claim 2: PUSH(u,v) and RELABEL(u) maintain the 
properties of the height function 
y PUSH(u,v) pushes flow along (u,v) � Ef, so there may be 

two possibilities: 
y It may add the edge (v,u) to Ef. Since PUSH(u,v) occurred, so 
K�X�� �K�Y������EHIRUH�WKH�SXVK��386+�GRHV�QRW�FKDQJH�K��6R�
h(v) = h(u) – ����K�X������DIWHU�WKH�SXVK��ZKLFK�VDWLVILHV�WKH�
height function property for the edge (v,u) 

y It may remove the edge (u,v) from Ef. Then the constraint does 
not apply to (u,v) anyway (as height function properties apply 

only for edges in Ef) 



y RELABEL(u) increases h(u) 
y Outgoing edges from u in Gf: Just before relabel, h(u) �� h(v) 

for any edge (u,v) � Ef��5HODEHO�LQFUHDVHV�K�X��WR�����
minimum of the h(v)’s. So h(u����K�Y����1 for any edge (u,v) 
� Ef. This satisfies the height function property. 

y Incoming edges to u in Gf: For any edge (w,u) � Ef, just 
EHIRUH�5(/$%(/��K�Z����K�X����1 (as the height function 
was satisfied before the operation). So just after RELABEL, 
K�Z����K�X����1 trivially as h(u) is increased. 

 



y Claim 3: For a preflow f, there is no path from s to t in 
the residual graph Gf 
y Can show by contradiction 

y Assume that such a path p exists. By the property of the 
height function, for any edge (u,v) � Ef ��K�X����K�Y�������
Applying this to successive vertices of the path p, it is easy  to 
VKRZ�WKDW�K�V����K�W����N��ZKHUH�N�LV�WKH�OHQJWK�RI�WKH�SDWK��
%XW�WKDW�PHDQV�K�V��FDQQRW�EH�_9_��DV�K�W�� ���DQG�N���_9_��
This is  a contradiction. 

 



y Claim 4: PUSH operations maintains the properties of a 
preflow 
y Since PUSH increases flow from u to v by df(u,v) = 

min(e(u), cf(u,v)) amount, it cannot make e(u) negative or 
exceed the capacity c(u,v). So the preflow f after the 
PUSH satisfies the capacity constraint and the flow 
constraint. It obviously satisfies the skew symmetry 
constraint (see pseudocode). So if f is a preflow before the 
PUSH, it remains a preflow after the PUSH 



Theorem: If the algorithm terminates, the preflow f at the 
end is a maximum flow. 
Proof Outline: 

y Initial f is a preflow. 
y RELABEL operations do not affect flow, so a preflow remains 

a preflow 
y PUSH operations  also maintain preflows (Claim 4) 
y Termination means for any vertx in V – {s,t}, PUSH and 

RELABEL are not applicable, which implies all vertices in V – 
{s,t`�PXVW�KDYH�H[FHVV����6R�LW�LV�D�IORZ��DQG�LW�ZLOO�QRW�FKDQJH�
(as no more PUSH and RELABEL can be done) 

y We know that there is no path from s to t in Gf (Claim 3) 
y So there is no augmenting path in the residual graph, so by 

max-flow min-cut theorem, f is a maximum flow. 

y Are we done with correctness proof? 



y No. We have proved “If ” it terminates, f is a maximum 
flow 

y We have not proved that it “does” terminate 
y What if there is always one or more vertices with excess  
!����DQG�DQ�LQILQLWH�VHTXHQFH�RI�386+�DQG�5(/$%(/�
operations occur? 

y So we have to prove that the algorithm  terminates 
y We can prove termination by showing that the number of 

PUSH and the number of RELABEL operations are 
bounded 



y We will omit this proof, will just note that the following 
can be proved: 
y $W�DQ\�WLPH�W�GXULQJ�WKH�H[HFXWLRQ�RI�WKH�DOJRULWKP��K�X����

2|V| – 1 

y Then, the number of RELABEL operations is bounded  by 
(2|V| – 1)(|V| – 2) < 2|V|2 

y Number of saturating pushes is < 2|V||E| 

y Number of nonsaturating pushes is < 4|V|2�_9_���_(_� 

y Therefore time complexity = O(|V|2E) 
y Can implement each PUSH and RELABEL in O(1) time 

 



y Note that the algorithm we presented is “generic” in the 
sense that it can apply PUSH and RELABELs in any 
order 

y There are different implementations that apply these 
operations in different specific orders to get better 
complexity 
y Relabel-to-front 

y FIFO 

y Highest-label 

y ….. 


