Network Flow

CS31005: Algorithms-II Autumn 2020 IIT Kharagpur

Network Flow

- Models the flow of items through a network
- Example
 - Transporting goods through the road/rail/air network
 - Flow of fluids (oil, water,..) through pumping stations and pipelines
 - Packet transfer in computer networks
 - Many others in a variety of fields...
- Has many different versions with wide practical applicability
- We will study the maximum flow problem

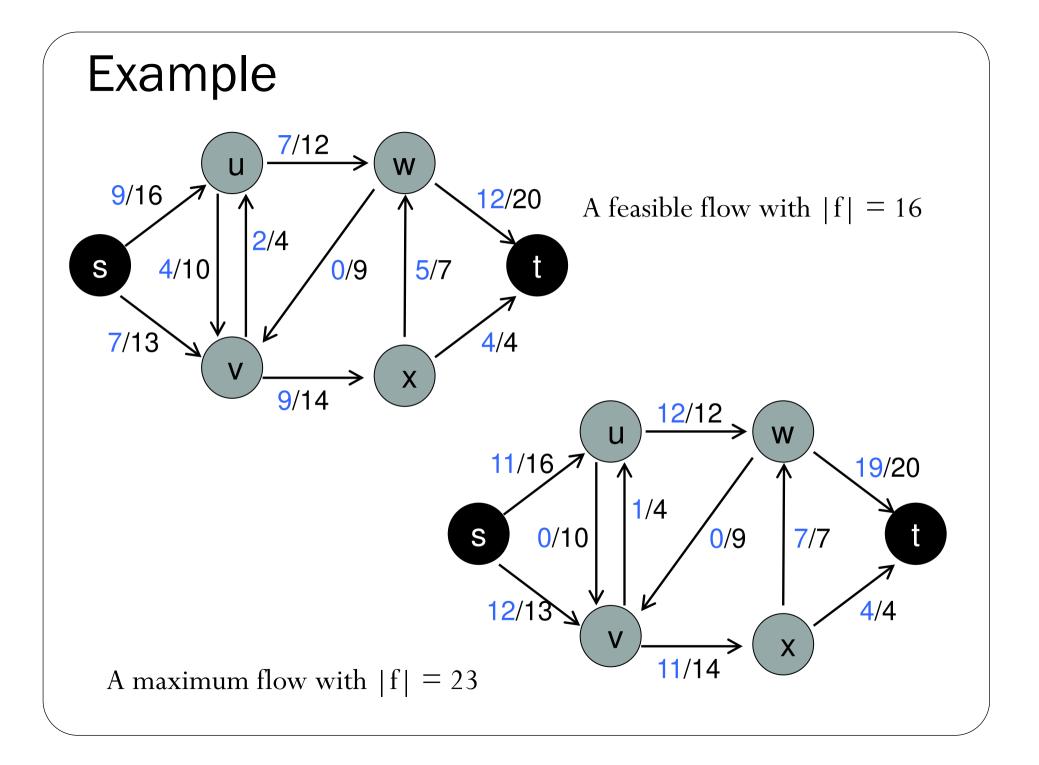
The Maximum Flow Problem

- Input: a directed graph G = (V, E) with
 - Each edge $(u,v) \in E$ has a capacity $c(u, v) \ge 0$
 - Two distinguished vertices s (source) and t (sink)
- Output: Flow in G, a function $f: E \rightarrow \mathbb{R}$ such that
 - $0 \le f(u,v) \le c(u,v)$ for each (u,v) in E (capacity constraint)
 - $\sum_{u \in V, (u, v) \in E} f(u, v) = \sum_{w \in V, (v, w) \in E} f(v, w)$ for all vin $V \setminus \{s, t\}$ (flow conservation constraint)
- Easy to see that this means total flow leaving s must be the total flow entering t
- Flow satisfying the two constraints is called a feasible flow

• Value of the flow in the network

$$|f| = \sum_{u \in V, (s, u) \in E} f(s, u) = \sum_{u \in V, (u, t) \in E} f(u, t)$$

- Maximum Flow Problem: Find a feasible flow f such that the |f| is maximum among all possible feasible flows
- The assigned flow values on edges can model amount of goods in a transportation network, oil in a pipeline network, packets in a computer network along road/pipeline/link etc. to maximize the total amount of items moved from a source to a destination



Algorithms for Maximum Flow

- Follows two broad approaches
 - The Ford-Fulkerson Method
 - Originally proposed by Ford and Fulkerson in 1956
 - Actually defines a method, the original paper did not specify any particular implementation of some steps
 - Many algorithms proposed later following the method, with specific implementations of steps
 - Preflow-Push Method
 - Presented by Andrew Goldberg and Robert Tarjan in 1986 (ACM STOC, later detailed journal version in JACM in 1988)
 - A totally different approach from the Ford-Fulkerson methods

Ford-Fulkerson Method

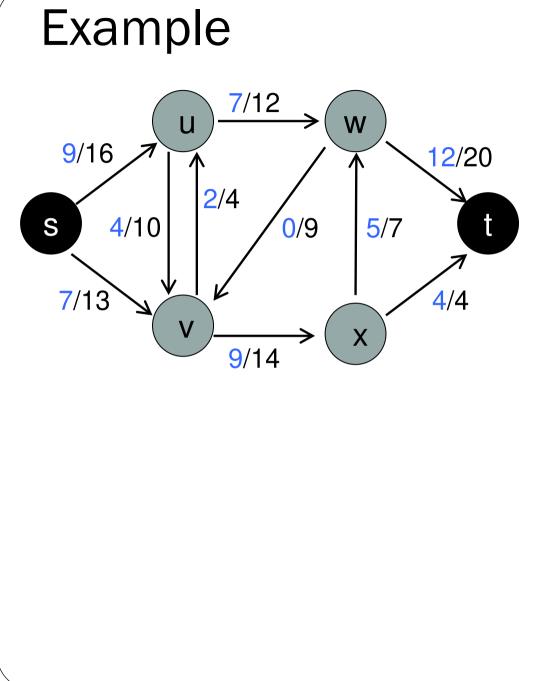
- Before starting the algorithm, we first give an equivalent modelling of the problem by
 - Extending the domain of capacity c and flow f to $V \times V$ (instead of keeping to E only)
 - Modifying the constraints appropriately

- Capacity c: V×V → R such that c(u,v) = 0 if (u,v) not in E
- Flow $f: V \times V \rightarrow R$ satisfying:
 - Capacity constraint: For all $u, v \in V$, $f(u,v) \leq c(u,v)$
 - Skew symmetry: For all u, $v \in V$, f(u,v) = -f(v,u)
 - Flow conservation: For all $u \in V \{s, t\}, \sum_{v \in V} f(u, v) = 0$

The value of the flow f is defined to be $|f| = \sum_{v \in V} f(s, v)$ The maximum flow problem is to find the flow with maximum value (same as before)

- What does this mean? Consider different possibilities for a pair (u,v)
 - None of the edges (u,v) or (v,u) exist
 - So $c(u,v) \equiv c(v,u) \equiv 0$
 - So f(u,v) = f(v,u) must be 0 as otherwise capacity constraint and skew symmetry are violated
 - Only one of the edges exist (say (u,v))
 - So $c(u,v) \ge 0$ and c(v,u) = 0
 - If f(u,v) = 0, then f(v,u) = 0 (skew symmetry)
 - If $f(u,v) \ge 0$, then $f(v,u) \le 0$ (skew symmetry)
 - If f(u,v) < 0 then f(v,u) > 0 (skew symmetry), But this violates capacity constraint for (v,u). So f(u,v) cannot be negative

- Both the edges (u,v) and (v,u) exist
 - So $c(u,v) \ge 0$ and $c(v,u) \ge 0$
 - So seems like both f(u,v) and f(v,u) can be positive (by capacity constraint)
 - But that would break skew symmetry, so both cannot be positive
 - The way to think about it is to consider the "net flow"
 - If you ship 20 units from A to B and ship 5 units from B to A, the net flow into B is not 20, it is 20 5 = 15. Similarly the net flow into A is not 5, but (-20) + 5 = -15, indicating it is actually an outflow
- In general, for any two vertices u, v, if f(u,v) > 0, then f(v,u) must be < 0 (skew symmetry)



$$f(s, u) = 9, f(u, s) = -9$$

$$f(s, v) = 7, f(v, s) = -7$$

$$f(u, w) = 7, f(w, u) = -7$$

$$f(u, v) = 4 - 2 = 2$$

$$f(v, u) = 2 - 4 = -2$$

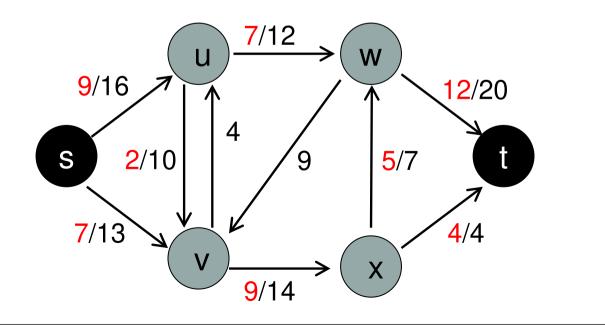
$$f(v, x) = 9, f(x, v) = -9$$

$$f(w, v) = 0, f(v, w) = 0$$

$$f(u, x) = 0, f(x, u) = 0$$

similar for other pairs in V×V

- With our new definition of flow, we will represent the graph to show f values on edges in red (not necessarily actual shipments)
- Also, we will only show positive f values on the edges of the graph
 - So for edges (v,u) and (w,v), we do not show the f values because f(v,u) = -2 and f(w,v) = 0



- Did we lose anything from the earlier model?
 - For edges (u,v) and (v,u) (i.e for the case when edges exist in both direction between a pair of vertices), we are now representing only the net flow, not how exactly the net flow is achieved
 - For example, the net flow of 2 from u to v could have been achieved in different ways like "ship 6 units from u to v and 4 units from v to u", "ship 2 units from u to v and 0 units from v to u",....
- So this model is not exactly equivalent to the model we had,
 - For the earlier model, actual shipments are the flow f
 - but ok as in practice as no need to ship in both directions
- If you have edge only in one direction, f will show the actual shipment

Residual Network

- Let f be a flow in a flow network G = (V, E) with source s and sink t.
- Residual capacity of (u,v) = amount of additional flow that can be pushed from a node u to node v before exceeding the capacity c(u,v)

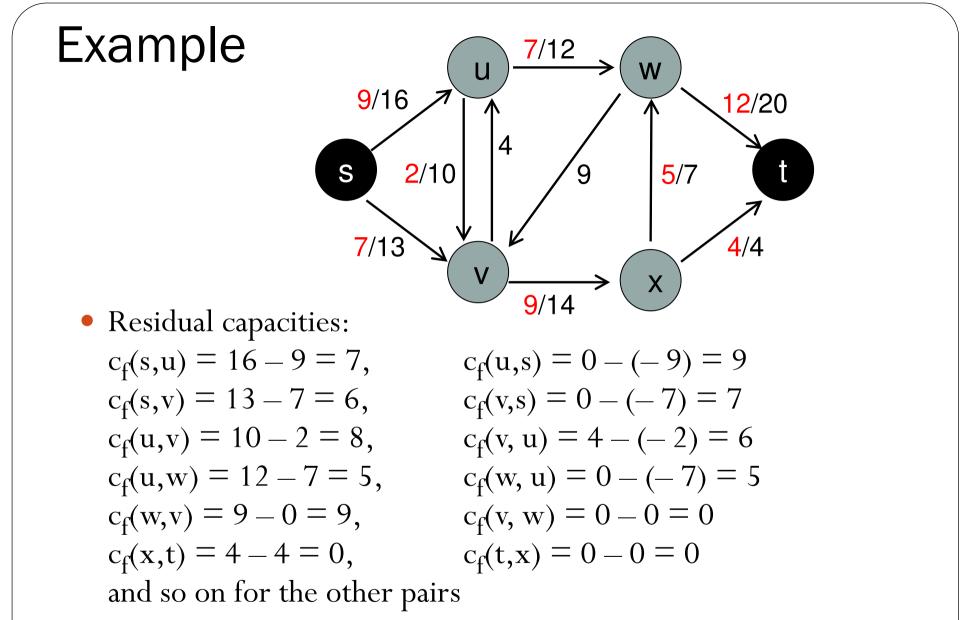
 $c_{f}(u, v) \equiv c(u, v) - f(u, v)$

• The residual graph of G induced by f is $G_f = (V, E_f)$, where $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$ Edges of the residual graph are called residual edges, with

capacity c_f

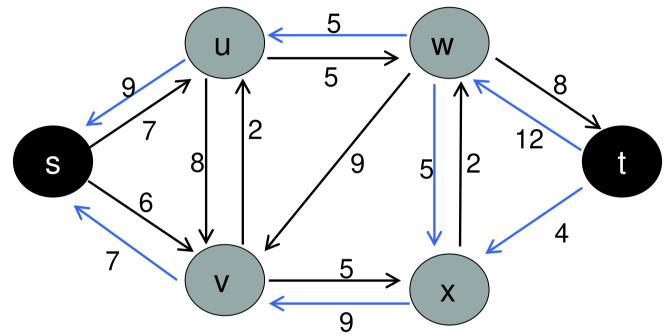
- Augmenting path: a simple path from source s to sink t in the residual graph $\rm G_{f}$
- Residual capacity of an augmenting path p
 c_f(p) = min{c_f(u, v) : (u, v) is on p}
 c_f(p) gives the maximum amount by which the flow on each

edge in the path p can be increased

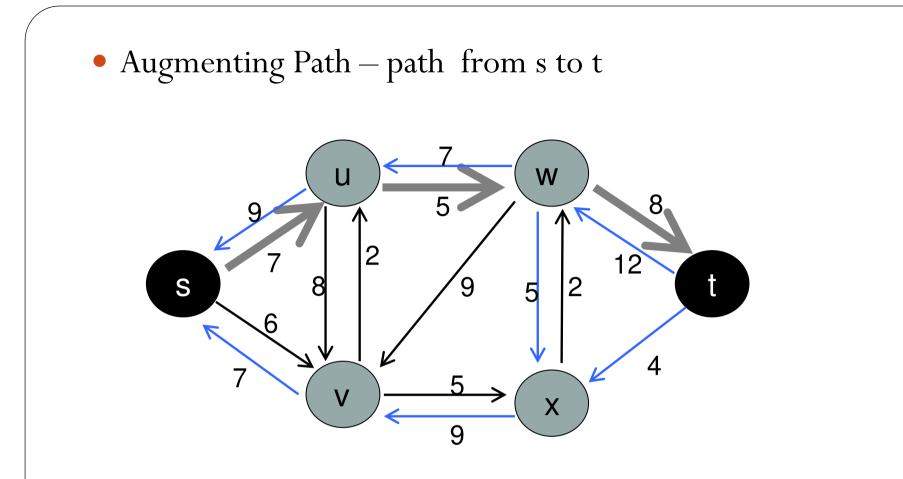


• For any a, b in V, $c_f(a,b) = 0$ if neither (a,b) nor (b,a) is an edge (as c and f are both 0 for such pairs), so we do not look at them

• Residual Graph (edges with 0 residual capacity are never shown)



- Note that residual graph may have edges where G did not (shown in color blue)
- It also may NOT have edges where G has one, ex. (x,t)
 - The residual capacity of the edge is 0
 - Such edges are called saturated



- One path shown in bold grey, <s,u,w,t> with residual capacity = min(7, 5, 8) = 5
 - We can increase ("augment") the flow on each edge of the path by 5 to get a new feasible flow with higher value

Ford-Fulkerson Algorithm

- 1. Start with a feasible flow f (usually f=0 for all (u,v))
- 2. Create the residual graph G_f
- 3. Find an augmenting path p in G_f
- 4. Augment the flow in G
- 5. Repeat 2-4 until there is no augmenting path

FORD-FULKERSON-METHOD(G, s, t)

- 1 initialize flow f to 0
- 2 while there exists an augmenting path p

do augment flow f along p

4 return f

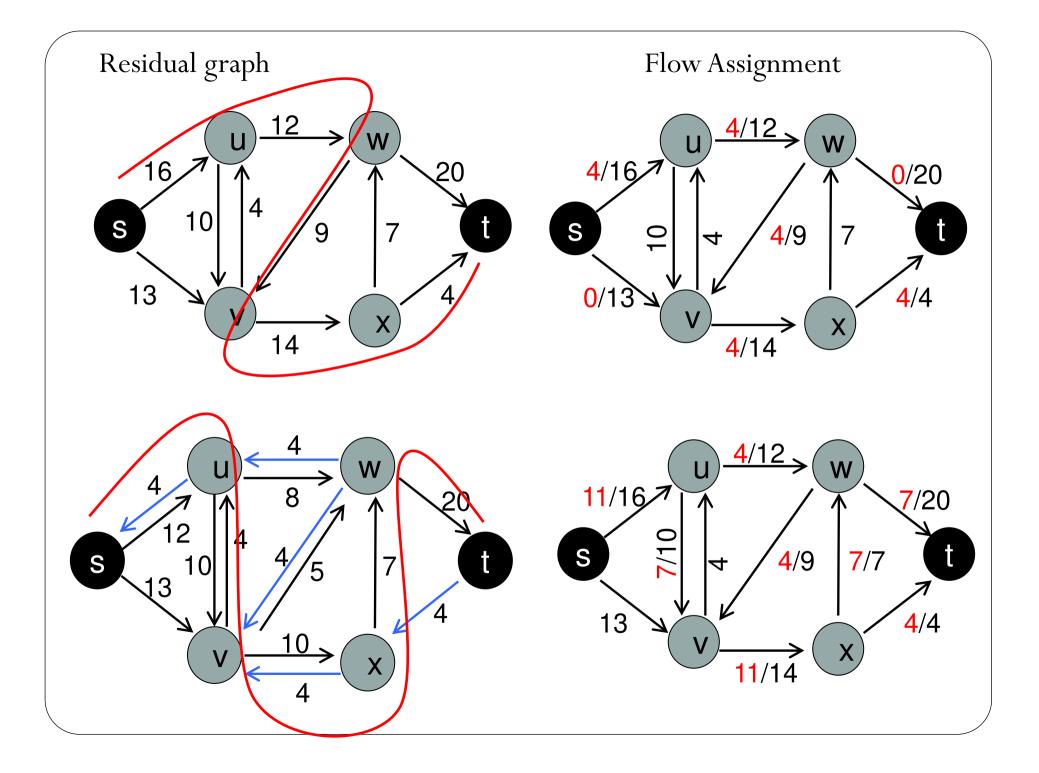
3

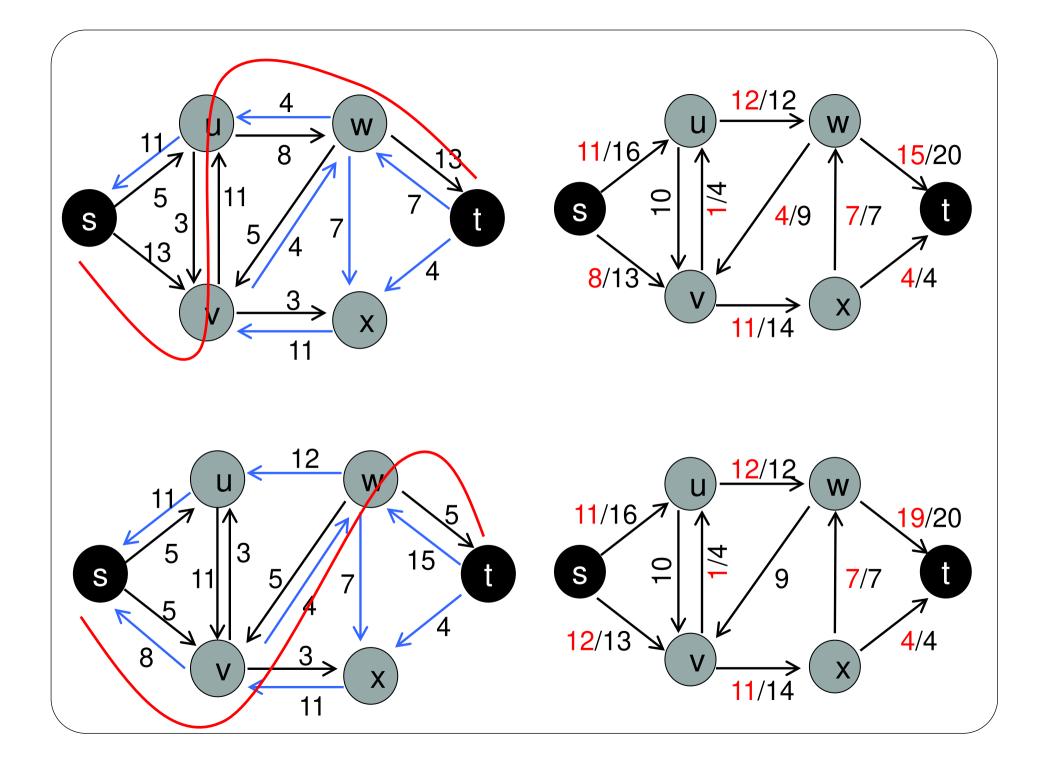
• Augmenting the flow along path p with residual capacity c

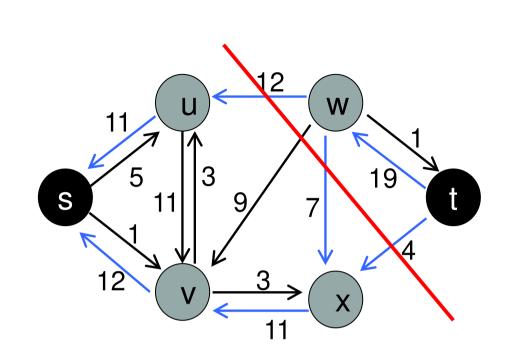
FORD-FULKERSON
$$(G, s, t)$$

1 for each edge $(u, v) \in E[G]$
2 do $f[u, v] \leftarrow 0$
3 $f[v, u] \leftarrow 0$
4 while there exists a path p from s to t in the residual network G_f
5 do $c_f(p) \leftarrow \min \{c_f(u, v) : (u, v) \text{ is in } p\}$
6 for each edge (u, v) in p
7 do $f[u, v] \leftarrow f[u, v] + c_f(p)$
8 $f[v, u] \leftarrow -f[u, v]$

- Note that either (u,v) or (v,u) must be an edge in G (or (u.v) cannot be in G_f)
- If (u,v) is an edge, this increases f (u,v)
- If (u,v) is not an edge, this actually decreases f(v,u)







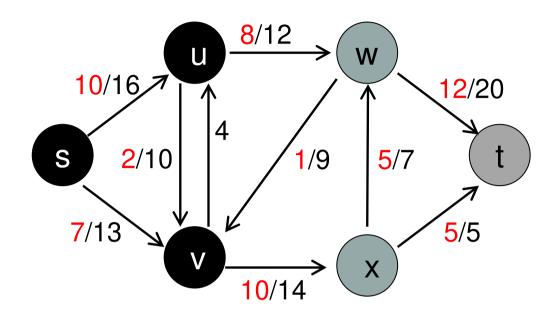
No augmenting path in the residual graph, so stop Maximum Flow |f| = 23

Proof of Correctness

- We first need some definitions
 - A cut (S,T) of a flow network G = (V, E) is a partition of V into S and T = V S, such that $s \in S$ and $t \in T$
 - If f is a flow then the net flow across the cut (S,T), f(S,T), is the sum of the flows (f) of all <u>pairs</u> (u,v) with u in S and v in T
 - The capacity of the cut (S,T), c(S,T), is the sum of the capacities of all <u>edges</u> (u,v) with u in S and V in T

• Of course, $f(S,T) \le c(S,T)$

• A minimum cut of a network is a cut whose capacity is minimum over all possible cuts of the network



• Consider the cut (S={s, u, v}, T={w, x, t})

•
$$f(S,T) = f(u,w) + f(v,w) + f(v,x)$$

= $8 + (-1) + 10 = 17$

• c(S,T) = c(u,w) + c(v,x) = 12 + 14 = 26

<u>Lemma 1</u>: Let f be a flow in a network G with source s and sink t, and let (S,T) be a cut of G. Then the net flow across (S,T) is f(S,T) = |f|.

f(S,T) = f(S,V) - f(S,S)= f(S,V) = f(s,V) + f(S - s,V) = f(s,V) = [f]

Proof:

Lemma 1 implies that the net flow across *any* cut is the same (= value of flow).

<u>Corollary 2</u>: The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G, and hence by the capacity of the minimum cut. <u>Theorem 3 (Max-flow min-cut theorem</u>): If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G
- 2. The residual network G_f contains no augmenting paths
- 3. |f| = capacity of the minimum cut

Proof:

1 implies 2 is obvious, as otherwise |f| can be increased by increasing the flow along the augmenting path

2 implies 3: Suppose that G_f has no augmenting paths. Let $S = \{v \in V: \text{ there exists a path from s to v in } G_f\}$ and T = V - S.

Then (S,T) is a cut as s is in S and t is not in S as there is no path from s to t in G_f .

For any $u \in S$ and $v \in T$, we have f(u,v) = c(u,v) as otherwise (u,v) is in G_f , which would mean v is in S, which is a contradiction. Therefore, by Lemma 1, |f| = f(S,T) = c(S,T)

3 implies 1: By corollary 2, $|f| \le c(S,T)$ for all cuts (S,T). Then, |f| = c(S,T) implies |f| is a maximum flow.

Time Complexity

- Original Ford-Fulkerson algorithm does not specify how to find an augmenting path
 - Can find in any order
- Assume all capacities are integer
- Let f* = maximum flow
- Lines 1-3 (Initialization) takes O(|E|) time
- No. of times the while loop (no. of times an augmenting path is found) is executed is bounded above by |f*|
 - As |f| increases by at least 1 in each augmentation
- Each iteration of the while loop takes O(|E|) time
- So worst case time complexity O(|E||f*|)
 - This is not polynomial, it is pseudo-polynomial

