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Network Flow 

y Models the flow of items through a network 
y Example 

y Transporting goods through the road/rail/air network 
y Flow of fluids (oil, water,..) through pumping stations and 

pipelines 
y Packet transfer in computer networks 
y Many others in a variety of fields… 

y Has many different versions with wide practical 
applicability 

y We will study the maximum flow problem 



The Maximum Flow Problem 

y Input: a directed graph G = (V, E) with 

y Each edge (u,v) � (�KDV�D�FDSDFLW\�F�X��Y����� 

y Two distinguished vertices s (source) and t (sink) 

y Output: Flow in G, a function f: E o 4 such that 
y ����I�u,v����F�u,v) for each (u,v) in E (capacity constraint) 

y �u � V, (u, v) � E f(u,v�� ��w � V, (v, w) � E f(v, w)   for all v 
in V\{s, t}                       (flow conservation constraint) 

y Easy to see that this means total flow leaving s must be 
the total flow entering t 

y Flow satisfying the two constraints is called a feasible flow 
 



y Value of the  flow in the network  

        _I_� ��u � V, (s, u) � E f(s,u�� ��u � V, (u, t) � E f(u, t) 

 

y Maximum Flow Problem: Find a feasible flow f such that 
the |f| is maximum among all possible feasible flows 

y The assigned flow values on edges can model amount of 
goods in a transportation network,  oil in a pipeline 
network, packets in a  computer network along 
road/pipeline/link etc. to maximize the total amount of 
items moved from a source to a destination 

 



Example  
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A feasible flow with |f| = 16  

A maximum flow with |f| = 23  
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Algorithms for Maximum Flow 

y Follows two broad approaches 
y The Ford-Fulkerson Method 

y Originally proposed by Ford and Fulkerson in 1956 
y Actually defines a method,  the original paper did not specify 

any particular implementation of some steps 
y Many algorithms proposed later following the method, with 

specific implementations of steps   
y Preflow-Push Method 

y Presented by Andrew Goldberg and Robert Tarjan in 1986 
(ACM STOC, later detailed journal version in JACM in 
1988) 

y A totally different approach from the Ford-Fulkerson 
methods 



Ford-Fulkerson Method 

y Before starting the algorithm, we first give an equivalent 
modelling of the problem by 
y Extending the domain of capacity c and flow f to V×V 

(instead of keeping to E only) 

y Modifying the constraints appropriately 



y Capacity c:  V×V o R such that c(u,v�� ���LI��u,v) not 
in E 

y Flow f : V × V o R satisfying: 
y Capacity constraint: For all u, v �V, f(u,v����F�u,v) 

y Skew symmetry: For all u, v �V, f(u,v) =  – f(v,u)  

y Flow conservation: For all u � V – ^V��W`���v�V f(u,v) = � 
 
The value RI�WKH�IORZ�I�LV�GHILQHG�WR�EH�_I_� ��v�V f(s,v) 
The maximum flow problem is to find the flow with 

maximum value (same as before) 

 



y What does this mean? Consider different possibilities for 
a pair (u,v) 
y None of the edges (u,v) or (v,u) exist 

y So c(u,v) = c(v,u�� �� 

y So f(u,v) = f(v,u��PXVW�EH���DV�RWKHUZLVH�FDSDFLW\�
constraint and skew symmetry are violated 

y Only one of the edges exist (say (u,v)) 

y So c(u,v������DQG�F�v,u�� �� 

y If f(u,v�� ����WKHQ�I�v,u�� ����VNHZ�V\PPHWU\� 

y If f(u,v��!����WKHQ�I�v,u�������VNHZ�V\PPHWU\� 

y If f(u,v������WKHQ�I�v,u��!����VNHZ�V\PPHWU\���%XW�WKLV�
violates capacity constraint for (v,u). So f(u,v) cannot be 
negative 
 



y Both the edges (u,v) and (v,u) exist 

y So c(u,v������DQG�F�v,u����� 

y So seems like both f(u,v) and f(v,u) can be positive (by 
capacity constraint) 

y But that would break skew symmetry, so both cannot be 
positive 

y The way to think about it is to consider the “net flow” 
y ,I�\RX�VKLS����XQLWV�IURP�$�WR�%�DQG�VKLS���XQLWV�IURP�%�WR�
$��WKH�QHW�IORZ�LQWR�%�LV�QRW�����LW�LV����– 5 = 15. Similarly 
the net flow into A is not 5, but (-�������� �-15, indicating 
it is actually an outflow 

y In general, for any two vertices u, v, if f(u,v��!����WKHQ�
f(v,u��PXVW�EH������VNHZ�V\PPHWU\� 

 

 



Example 

f(s, u)  = 9,   f(u, s) = – 9 

f(s, v) = 7,    f(v, s) = – 7 

f(u,w) = 7,   f(w,u) = – 7 

f(u,v) = 4 – 2 = 2 

f(v, u) = 2 – 4 = -2 

f(v,x) = 9,    f(x,v) = – 9 

f(w,v�� ������I�Y��Z�� �� 

f�X��[�� �����I�[��X�� �� 

similar for other pairs in V×V 
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y With our new definition of flow, we will represent the 
graph to show f values on edges in red (not necessarily 
actual shipments) 

y Also, we will only show positive f values on the edges of 
the graph  
y So for edges (v,u) and (w,v), we do not show the f values 

because f(v,u) = – 2 and f(w,v�� �� 
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y Did we lose anything from the earlier model? 
y For edges (u,v) and (v,u) (i.e for the case when edges exist in 

both direction between a pair of vertices), we are now 
representing only the net flow, not how exactly the net flow is 
achieved 
y For example, the net flow of 2 from u to v could have been achieved 

in different ways like “ship 6 units from u to v and 4 units from v to 
Xµ��́ VKLS���XQLWV�IURP�X�WR�Y�DQG���XQLWV�IURP�Y�WR�Xµ�«�� 

y So this model is not exactly equivalent to the model we had,  
y For the earlier model, actual shipments are the flow f 
y but ok as in practice as no need to ship in both directions 

y If you have edge only in one direction, f will show the actual 
shipment 



Residual Network 

y Let f be a flow in a flow network G = (V, E) with source s 
and sink t.  

y Residual capacity of (u,v) = amount of additional flow that 
can be pushed from a node u to node v before exceeding the 
capacity c(u,v)  

                     cf(u, v) = c(u, v) – f(u, v) 

y The residual graph of G induced by f is Gf = (V, Ef), where 

                     Ef = {(u, v) � V × V : cf�X��Y��!��` 

    Edges of the residual graph are called  residual edges, with 

capacity cf 
 



y Augmenting path: a simple path from source s to sink t in 
the residual graph Gf  

y Residual capacity of an augmenting path p  

 cf(p) = min{cf(u, v) : (u, v) is on p} 
cf(p) gives the maximum amount by which the flow on each 
edge in the path p can be increased 

                        

 



Example 

s 

 v  x 

t 

w  u 
9/16 

7/12 

12/20 

2/10 

4 

9 5/7 

4/4 7/13 

9/14 
y Residual capacities: 

cf(s,u) = 16 – 9 = 7,     cf(u,s�� ���– (– 9) = 9 
cf(s,v) = 13 – 7 = 6,      cf(v,s�� ���– (– 7) = 7 
cf(u,v�� ����– 2 = 8,     cf(v, u) = 4 – (– 2) = 6 
cf(u,w) = 12 – 7 = 5,    cf�Z��X�� ���– (– 7) = 5 
cf(w,v) = 9 – �� ��������� cf�Y��Z�� ���– �� �� 
cf(x,t) = 4 – �� ���������� cf(t,x) = ��– �� ���� 
and so on for the other pairs 

y For any a, b in V, cf(a,b�� ���LI�QHLWKHU��a,b) nor (b,a) is an edge 
�DV�F�DQG�I�DUH�ERWK���IRU�VXFK�SDLUV���VR�ZH�GR�QRW�ORRN�DW�WKHP 
 



y 5HVLGXDO�*UDSK��HGJHV�ZLWK���UHVLGXDO�FDSDFLW\�DUH�QHYHU�VKRZQ� 
 
 
 
 
 
 
 
 
 

y Note that residual graph may have edges where G did not 
(shown in color blue) 

y It also may NOT have edges where G has one, ex. (x,t) 
y 7KH�UHVLGXDO�FDSDFLW\�RI�WKH�HGJH�LV�� 
y Such edges are called saturated 
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y Augmenting Path – path  from s to t 
 
 
 
 
 
 
 
 

y One path shown in bold grey, <s,u,w,t> with residual 
capacity = min(7, 5, 8) = 5 
y We can increase (“augment”) the flow on each edge of the 

path by 5 to get a new feasible flow with higher value 
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Ford-Fulkerson Algorithm 

1. 6WDUW�ZLWK�D�IHDVLEOH�IORZ�I��XVXDOO\�I ��IRU�DOO��u,v)) 

2. Create the residual graph Gf 

3. Find an augmenting path p in Gf 

4. Augment the flow in G 

5. Repeat 2-4 until there is no augmenting path 

 



y Augmenting  the flow along path p with residual capacity c 

 

 

 

 

 

 

 
y Note that either (u,v) or (v,u) must be an edge in G (or (u.v) 

cannot be in Gf) 

y If (u,v) is an edge, this increases f (u,v) 

y If (u,v) is not an edge, this actually decreases f(v,u) 
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Residual graph Flow Assignment 
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No augmenting path in the residual graph, so stop 

Maximum Flow |f| = 23 
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Proof of Correctness 

y We first need some definitions  
y A cut (S, T) of a flow network G = (V, E) is a partition of  

V into S and T = V – S, such that s � S and t � T 

y If f is a flow then the net flow across the cut (S, T) , f(S, T), 
is the sum of the flows (f) of all pairs (u,v) with u in S and 
v in T 

y The capacity of the cut (S, T), c(S, T), is the sum of the 
capacities of all edges (u,v) with u in S and V in T  

y 2I�FRXUVH��I�6��7����F�6��7� 

y A minimum cut of a network is a cut whose capacity is 
minimum over all possible cuts of the network 

 

 



y Consider the cut (S={s, u, v},  T={w, x, t}) 

y f(S, T) = f(u,w����I�v,w����I�v,x) 

       �������-�������� ��� 

y c(S, T) = c(u,w����F�v,x�� ��������� ��� 
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Lemma 1: Let f be a flow in a network G with source s 
and sink t, and  let (S, T) be a cut of G. Then the net flow 
across (S, T) is f(S, T) = |f|. 

 

Proof:  

f(S, T) = f(S,V) – f(S,S) 

 = f(S,V) 

  �I�V��9����f(S – s,V) 

 = f(s,V) 

 = |f| 

 



 

Lemma 1 implies that the net flow across any cut is the 
same (= value of flow). 

 

Corollary 2: The value of any flow f in a flow network G is 
bounded from above by the capacity of any cut of G, and 
hence by the capacity of the minimum cut. 

 



Theorem 3 (Max-flow min-cut theorem): If f is a flow in a 
flow network G = (V, E) with source s and sink t, then the 
following conditions are equivalent: 

1. f is a maximum flow in G 

2. The residual network Gf contains no augmenting paths 

3. |f| = capacity of the minimum cut 

 

Proof:  

1 implies 2 is obvious, as otherwise |f| can be increased by 
increasing the flow along the augmenting path 



2 implies 3:  

Suppose that Gf  has no augmenting paths. Let  

    S = {v € V: there exists a path from s to v in Gf} and  

    T = V – S.  

Then (S,T) is a cut as s is in S and t is not in S as there is no 
path from s to t in Gf.  

For any u € S and v € T, we have f(u,v) = c(u,v) as 
otherwise (u,v) is in Gf, which would mean v is in S, which 
is a contradiction. Therefore, by Lemma 1, |f| = f(S,T) = 
c(S,T) 

3 implies 1: By corollary 2, |f| ��F�6�7��for all cuts (S,T). 
Then, |f| = c(S,T) implies |f| is a maximum flow. 

 



Time Complexity 

y Original Ford-Fulkerson algorithm does not specify how to 
find an augmenting path 
y Can find in any order 

y Assume all capacities are integer 
y Let f* = maximum flow 
y Lines 1-3 (Initialization) takes O(|E|) time 
y No. of times the while loop (no. of times an augmenting path 

is found) is executed is bounded above by |f*| 
y As |f| increases by at least 1 in each augmentation 

y Each iteration of the while loop takes O(|E|) time 
y So worst case time complexity O(|E||f*|) 

y This is not polynomial, it is pseudo-polynomial 



y This bound is tight 


