
Fibonacci Heap
CS31005: Algorithms-II

Autumn 2020
IIT Kharagpur

Heaps as Priority Queues
 You have seen binary min-heaps/max-heaps
 Can support creating a heap, insert, finding/extracting

the min (max) efficiently
 Can also support decrease-key operations efficiently
 However, not good for merging two heaps
 O(n) where n is the total no. of elements in the two heaps

 Variations of heaps exist that can merge heaps efficiently
 May also improve the complexity of the other operations
 Ex. Binomial heaps, Fibonacci heaps

 We will study Fibonacci heaps, an amortized data
structure

A Comparison

 Operation
Binary heap
(worst-case)

Binomial heap
(worst-case)

Fibonacci heap
(amortized)

MAKE-HEAP Θ (1) Θ (1) Θ (1)

INSERT Θ (lg n) O(lg n) Θ (1)

MINIMUM Θ (1) O(lg n) Θ (1)

EXTRACT-MIN Θ (lg n) Θ (lg n) O(lg n)

MERGE/UNION Θ (n) O(lg n) Θ (1)

DECREASE-KEY Θ (lg n) Θ (lg n) Θ (1)

DELETE Θ (lg n) Θ (lg n) O(lg n)

Fibonacci Heap
 A collection of min-heap ordered trees
 Each tree is rooted but “unordered” , meaning there is no

order between the child nodes of a node (unlike, for ex.,
left child and right child in a rooted, ordered binary tree)

 Each node x has
 One parent pointer p[x]
 One child pointer child[x] which points to an arbitrary child

of x
 The children of x are linked together in a circular, doubly

linked list
 Each node y has pointers left[y] and right[y] to its left and right node

in the list
 So x basically stores a pointer to start in this list of its children

 The root of the trees are again connected with a circular,
doubly linked list using their left and right pointers

 A Fibonacci heap H is defined by
 A pointer min[H] which points to the root of a tree

containing the minimum element (minimum node of the
heap)

 A variable n[H] storing the number of elements in the heap

23 7

41 39

24

30

17

38 18 52 26

3

46

35

min[H]

23 7

41 39

24

30

17

38 18 52 26

3

46

35

min[H]

Additional Variables
 Each node x also has two other fields
 degree[x] – stores the number of children of x
 mark[x] – indicates whether x has lost a child since the last

time x was made the child of another node
 We will denote marked nodes by color black, and unmarked

ones by color grey
 A newly created node is unmarked
 A marked node also becomes unmarked whenever it is made

the child of another node

Amortized Analysis
 We mentioned Fibonacci heap is an amortized data

structure
 We will use the potential method to analyse
 Let t(H) = no. of trees in a Fibonacci heap H
 Let m(H) = number of marked nodes in H
 Potential function used

 Φ (H) = t(H) + 2m(H)

Operations
 Create an empty Fibonacci heap
 Insert an element in a Fibonacci heap
 Merge two Fibonacci heaps (Union)
 Extract the minimum element from a Fibonacci heap
 Decrease the value of an element in a Fibonacci heap
 Delete an element from a Fibonacci heap

Creating a Fibonacci Heap
 This creates an empty Fibonacci heap
 Create an object to store min[H] and n[H]
 Initialize min[H] = NIL and n[H] = 0

 Potential of the newly created heap Φ (H) = 0
 Amortized cost = actual cost = O(1)

Inserting an Element
 Add the element to the left of min[H]
 Update min[H] if needed

7 23

30

17

35

26 46

24

39

41 18 52

3

44

min[H]
21

Insert 21

Inserting an Element (contd.)
 Add the element to the left of node pointed to by min[H]
 Update min[H] if needed

39

41

7 23

18 52

3

30

17

35

26 46

24

44

min[H]

21

Amortized Cost of Insert
 Actual Cost O(1)
 Change in potential +1
 One new tree, no new marked node

 Amortized cost O(1)

Merging Two Heaps (Union)
 Concatenate the root lists of the two Fibonacci heaps
 Root lists are circular, doubly linked lists, so can be easily

concatenated

39

41

7 17

18 52

3

30

23

35

26 46

24

44

min[H2]

21

min[H1]

Merging Two Heaps (contd.)
 Concatenate the root lists of the two Fibonacci heaps
 Root lists are circular, doubly linked lists, so can be easily

concatenated

39

41

7 17

18 52

3

30

23

35

26 46

24

44

min[H]

21

Amortized Cost of Merge/Union
 Actual cost = O(1)
 Change in potential = 0
 Amortized cost = O(1)

Extracting the Minimum Element
 Step 1:
 Delete the node pointed to by min[H]
 Concatenate the deleted node’s children into root list

39

41 18 52

3

44

min[H]

17 23

30

7

35

26 46

24

Extracting the Minimum (contd.)
 Step 1:
 Delete the node pointed to by min[H]
 Concatenate the deleted node’s children into root list

39

41 17 23 18 52

30

7

35

26 46

24

44

min[H]

Extracting the Minimum (contd.)
 Step 2: Consolidate trees so that no two roots have same

degree
 Traverse the roots from min towards right
 Find two roots x and y with the same degree, with key[x] ≤

key[y]
 Remove y from root list and make y a child of x
 Increment degree[x]
 Unmark y if marked

 We use an array A[0..D(n)] where D(n) is the maximum
degree of any node in the heap with n nodes, initially all
NIL
 If A[k] = y at any time, then degree[y] = k

Extracting the Minimum (contd.)
 Step 2: Consolidate trees so that no two roots have same

degree. Update min[H] with the new min after
consolidation.

39

41 17 23 18 52

30

7

35

26 46

24

44

current
min[H]

Extracting the Minimum (contd.)

39

41 17 23 18 52

30

7

35

26 46

24

44

current
min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 17 23 18 52

30

7

35

26 46

24

44

current

min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 17 23 18 52

30

7

35

26 46

24

44
current

min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 17 23 18 52

30

7

35

26 46

24

44
current

Merge 17 and 23 trees

min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 17

23

18 52

30

7

35

26 46

24

44

current

Merge 7 and 17 trees

min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 7

30

18 52

17

35

26 46

24

44

current

23
Merge 7 and 24 trees

min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 7

30

18 52

23

17

35

26 46

24 44

current min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 7

30

18 52

23

17

35

26 46

24 44

current
min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 7

30

18 52

23

17

35

26 46

24 44

current
min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39

41 7

30

18 52

23

17

35

26 46

24 44

current

Merge 41 and 18 trees

min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39 41

7

30

18 52

23

17

35

26 46

24

44

current
min[H]

0 1 2 3

A

Extracting the Minimum (contd.)

39 41

7

30

18 52

23

17

35

26 46

24

44

current
min[H]

0 1 2 3

A

Extracting the Minimum (contd.)
 All roots covered by current pointer, so done
 Now find the minimum among the roots and make

min[H] point to it (already pointing to minimum in this
example)

 Final heap is

39 41

7

30

18 52

23

17

35

26 46

24

44

min[H]

Amortized Cost of Extracting Min
 Recall that
 D(n) = max degree of any node in the heap with n nodes
 t(H) = number of trees in heap H
 m(H) = number of marked nodes in heap H
 Potential function Φ(H) = t(H) + 2m(H)

 Actual Cost
 Time for Step 1:
 O(D(n)) work adding min's children into root list

 Time for Step 2 (consolidating trees)
 Size of root list just before Step 2 is ≤ D(n) + t(H) - 1
 t(H) original roots before deletion minus the one deleted

plus the number of children of the deleted node
 The maximum number of merges possible is the no. of nodes

in the root list
 Each merge takes O(1) time
 So total O(D(n) + t(H)) time for consoildation
 O(D(n)) time to find the new min and updating min[H] after

consolidation, since at most D(n) + 1 nodes in root list

 Total actual cost = time for Step 1 + time for Step 2
 = O(D(n) + t(H))

 Potential before extracting minimum = t(H) + 2m(H)
 Potential after extracting minimum ≤ (D(n) + 1) + 2m(H)
 At most D(n) + 1 roots are there after deletion
 No new node is marked during deletion
 Can be unmarked, but not marked

 Amortized cost = actual cost + potential change
= O(D(n)+ t(H)) + ((D(n)+1) +2m(H)) – (t(H) + 2m(H))
= O(D(n))

 But D(n) can be O(n), right? That seems too costly! So is
O(D(n)) any good?
 Can show that D(n) = O(lg n) (proof omitted)

 So amortized cost = O(lg n)

 Decrease key of element x to k
 Case 0: min-heap property not violated
 decrease key of x to k
 change heap min pointer if necessary

Decrease Key

24

46

17

30

23

7

88

26

21

52

39

18

41

38

Decrease 46 to 45
72

45

35

 min[H]

 Case 1: parent of x is unmarked
 decrease key of x to k
 cut off link between x and its parent, unmark x if marked
 mark parent
 add tree rooted at x to root list, updating heap min pointer

24

45

17

30

23

7

88

26

21

52

39

18

41

38

Decrease 45 to 15
72

15

35

 min[H]

24

15

17

30

23

7

88

26

21

52

39

18

41

38

Decrease 45 to 15
72

24

35

 min[H]

 Case 1: parent of x is unmarked
 decrease key of x to k
 cut off link between x and its parent, unmark x if marked
 mark parent
 add tree rooted at x to root list, updating heap min pointer

24 17

30

23

7

88

26

21

52

39

18

41

38

Decrease 45 to 15

24

35

 min[H]
15

72

 Case 1: parent of x is unmarked
 decrease key of x to k
 cut off link between x and its parent, unmark x if marked
 mark parent
 add tree rooted at x to root list, updating heap min pointer

 Case 2: parent of x is marked
 decrease key of x to k
 cut off link between x and its parent p[x], add x to root list, unmark x if

marked
 cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if

marked
 If p[p[x]] unmarked, then mark it and stop
 If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked

node found or root reached

35

24

15

17

30

23

7

88

26

21

52

39

18

41

38

Decrease 35 to 5

72 24

5

 min[H]

x

p[x]

p[p[x]]

24 17

30

23

7

26

21

52

39

18

41

38

Decrease 35 to 5

24

5

88

15

72

 min[H]

x

p[x]

p[p[x]]

 Case 2: parent of x is marked
 decrease key of x to k
 cut off link between x and its parent p[x], add x to root list, unmark x if

marked
 cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if

marked
 If p[p[x]] unmarked, then mark it and stop
 If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked

node found or root reached

24

26

17

30

23

7

21

52

39

18

41

38

Decrease 35 to 5

88 24

5 15

72

 min[H]

p[x]

p[p[x]]

x

 Case 2: parent of x is marked
 decrease key of x to k
 cut off link between x and its parent p[x], add x to root list, unmark x if

marked
 cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if

marked
 If p[p[x]] unmarked, then mark it and stop
 If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked

node found or root reached

26

17

30

23

7

21

52

39

18

41

38

88

5 15 24

72

 min[H]

Decrease 35 to 5: FINAL HEAP

 Case 2: parent of x is marked
 decrease key of x to k
 cut off link between x and its parent p[x], add x to root list, unmark x if

marked
 cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if

marked
 If p[p[x]] unmarked, then mark it and stop
 If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked

node found or root reached (cascading cut)

Fib-Heap-Decrease-key(H, x, k)
1. if k > key[x]
2. error “new key is greater than current key”
3. key[x] = k
4. y ← p[x]
5. if y ≠ NIL and key[x] < key[y]
6. { CUT(H, x, y)
7. CASCADING-CUT(H, y) }
8. if key[x] < key[min[H]]
9. min[H] = x

CUT(H, x, y)
 1. remove x from the child list of y, decrement degree[y]
 2. add x to the root list of H
 3. p[x] = NIL
 4. mark[x] = FALSE

CASCADING-CUT(H, y)
1. z ← p[y]
2. if z ≠ NIL
3. if mark[y] = FALSE
4. mark[y] = TRUE
5. else CUT(H, y, z)
6. CASCADING-CUT(H, z)

Amortized Cost of Decrease Key
 Actual cost
 O(1) time for decreasing key value, and the first cut of x
 O(1) time for each of c cascading cuts, plus reinserting in root

list
 Total O(c)

 Change in Potential
 H = tree just before decreasing key, H’ just after
 t(H') = t(H) + c
 t(H) + (c-1) trees from the cascading cut + the tree rotted at x

 m(H') ≤ m(H) – c + 2
 Each cascading cut unmarks a node except the last one (–(c – 1))
 Last cascading cut could potentially mark a node (+1)

 Change in potential
 = (t(H’) + 2m(H’)) – (t(H) + 2m(H))
 ≤ c + 2(– c + 2) = 4 – c

 Amortized cost = actual cost + potential change

 = O(c) + 4 – c = O(1)

 Delete node x
 Decrease key of x to – ∞
 Delete min element in heap

 Amortized cost
 O(1) for decrease-key.
 O(D(n)) for delete-min.
 Total O(D(n))
 Again, can show that D(n) = O(lg n)
 So amortized cost of delete = O(lg n)

Deleting an Element

	Fibonacci Heap
	Heaps as Priority Queues
	A Comparison
	Fibonacci Heap
	Slide Number 5
	Slide Number 6
	Additional Variables
	Amortized Analysis
	Operations
	Creating a Fibonacci Heap
	Inserting an Element
	Inserting an Element (contd.)
	Amortized Cost of Insert
	Merging Two Heaps (Union)
	Merging Two Heaps (contd.)
	Amortized Cost of Merge/Union
	Extracting the Minimum Element
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Extracting the Minimum (contd.)
	Amortized Cost of Extracting Min
	Slide Number 35
	Slide Number 36
	Decrease Key
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Amortized Cost of Decrease Key
	Slide Number 48
	Deleting an Element

