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Heaps as Priority Queues 
 You have seen binary min-heaps/max-heaps 
 Can support creating a heap, insert, finding/extracting 

the min (max) efficiently 
 Can also support decrease-key operations efficiently  
 However, not good for merging two heaps 
 O(n) where n is the total no. of elements in the two heaps 

 Variations of heaps exist that can merge heaps efficiently 
 May also improve the complexity of the other operations 
 Ex. Binomial heaps, Fibonacci heaps 

 We will study Fibonacci heaps, an amortized data 
structure 



A Comparison 

 Operation 
Binary heap 
(worst-case)  

Binomial heap  
(worst-case) 

Fibonacci heap  
(amortized) 

MAKE-HEAP Θ (1) Θ (1) Θ (1) 

INSERT Θ (lg n) O(lg n) Θ (1) 

MINIMUM Θ (1) O(lg n) Θ (1) 

EXTRACT-MIN Θ (lg n) Θ (lg n) O(lg n) 

MERGE/UNION Θ (n) O(lg n) Θ (1) 

DECREASE-KEY  Θ (lg n) Θ (lg n) Θ (1) 

DELETE Θ (lg n) Θ (lg n) O(lg n) 



Fibonacci Heap 
 A collection of min-heap ordered trees 
 Each tree is rooted but “unordered” ,  meaning there is no 

order between the child nodes of a node (unlike, for ex., 
left child and right child in a rooted, ordered binary tree) 

 Each node x has  
 One parent pointer p[x]  
 One child pointer child[x] which points to an arbitrary child 

of x 
 The children of x are linked together in a circular, doubly 

linked list 
 Each node y has pointers left[y] and right[y] to its left and right node 

in the list 
 So x basically stores a pointer to start in this list of its children 

 

 
 



 The root of the trees are again connected with a circular, 
doubly linked list using their left and right pointers 

 A Fibonacci heap H is defined by  
 A pointer min[H] which points to the root of a tree 

containing the minimum element (minimum node of the 
heap) 

 A variable n[H] storing the number of elements in the heap 
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Additional Variables 
 Each node x also has two other fields 
 degree[x] – stores the number of children of x 
 mark[x] – indicates whether x has lost a child since the last 

time x was made the child of another node 
 We will denote marked nodes by color black, and unmarked 

ones by color grey 
 A newly created node is unmarked 
 A marked node also becomes unmarked whenever it is made 

the child of another node 

 



Amortized Analysis 
 We mentioned Fibonacci heap is an amortized data 

structure 
 We will use the potential method to analyse 
 Let  t(H) = no. of trees in a Fibonacci heap H  
 Let m(H) = number of marked nodes in H 
 Potential function used  

 Φ (H) = t(H) + 2m(H) 
 



Operations 
 Create an empty Fibonacci heap 
 Insert an element in a Fibonacci heap 
 Merge two Fibonacci heaps (Union) 
 Extract the minimum element from a Fibonacci heap 
 Decrease the value of an element in a Fibonacci heap 
 Delete an element from a Fibonacci heap 



Creating a Fibonacci Heap 
 This creates an empty Fibonacci heap 
 Create an object to store min[H] and n[H] 
 Initialize min[H] = NIL and n[H] = 0 

 Potential of the newly created heap Φ (H) = 0 
 Amortized cost = actual cost = O(1) 

 



Inserting an Element 
 Add the element to the left of min[H] 
 Update min[H] if needed 
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Inserting an Element (contd.) 
 Add the element to the left of node pointed to by min[H] 
 Update min[H] if needed 
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Amortized Cost of Insert 
 Actual Cost O(1) 
 Change in potential +1 
 One new tree, no new marked node 

 Amortized cost O(1) 



Merging Two Heaps (Union) 
 Concatenate the root lists of the two Fibonacci heaps 
 Root lists are circular, doubly linked lists, so can be easily 

concatenated 
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Merging Two Heaps (contd.) 
 Concatenate the root lists of the two Fibonacci heaps 
 Root lists are circular, doubly linked lists, so can be easily 

concatenated 
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Amortized Cost of Merge/Union 
 Actual cost = O(1) 
 Change in potential = 0 
 Amortized cost = O(1) 

 
 
 



Extracting the Minimum Element 
 Step 1: 
 Delete the node pointed to by min[H] 
 Concatenate the deleted node’s children into root list 
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Extracting the Minimum (contd.) 
 Step 1: 
 Delete the node pointed to by min[H] 
 Concatenate the deleted node’s children into root list 
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Extracting the Minimum (contd.) 
 Step 2: Consolidate trees so that no two roots have same 

degree 
 Traverse the roots from min towards right 
 Find two roots x and y with the same degree, with key[x] ≤ 

key[y] 
 Remove y from root list and make y a child of x 
 Increment degree[x] 
 Unmark y if marked 

 We use an array A[0..D(n)] where D(n) is the maximum 
degree of any node in the heap with n nodes, initially all 
NIL 
 If A[k] = y at any time, then degree[y] = k 

 
 

 



Extracting the Minimum (contd.) 
 Step 2: Consolidate trees so that no two roots have same 

degree. Update min[H] with the new min after 
consolidation. 

 

 

39 

41 17 23 18 52 

30 

7 

35 

26 46 

24 

44 

current 
min[H] 



Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
 

39 

41 17 23 18 52 

30 

7 

35 

26 46 

24 

44 
current 

Merge 17 and 23 trees 

min[H] 

0 1 2 3 

A 



Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
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Extracting the Minimum (contd.) 
 All roots covered by current pointer, so done 
 Now find the minimum among the roots and make 

min[H] point to it (already pointing to minimum in this 
example) 

 Final heap is 
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Amortized Cost of Extracting Min 
 Recall that 
 D(n) =  max degree of any node in the heap with n nodes 
 t(H) =  number of trees in heap H 
 m(H) = number of marked nodes in heap H 
 Potential function Φ(H) =  t(H) + 2m(H) 

 Actual Cost 
 Time for Step 1:  
 O(D(n)) work adding min's children into root list 

 
 

 
 

 
 



 Time for Step 2 (consolidating trees) 
 Size of root list just before Step 2  is ≤ D(n) + t(H) - 1  
 t(H) original roots before deletion minus the one deleted 

plus the number of children of the deleted node 
 The maximum number of merges possible is the no. of  nodes 

in the root list 
 Each merge takes O(1) time 
 So total O(D(n) + t(H)) time for consoildation 
 O(D(n)) time to find the new min and updating min[H] after 

consolidation, since at most D(n) + 1 nodes in root list 

 Total actual cost = time for Step 1 + time for Step 2 
         = O(D(n) + t(H)) 



 Potential before extracting minimum = t(H) + 2m(H) 
 Potential after extracting minimum ≤ (D(n) + 1) + 2m(H) 
 At most D(n) + 1 roots are there after deletion 
 No new node is marked during deletion 
 Can be unmarked, but not marked 

 Amortized cost = actual cost + potential change 
= O(D(n)+ t(H)) + ((D(n)+1) +2m(H)) – (t(H) + 2m(H)) 
= O(D(n)) 

 But D(n) can be O(n), right? That seems too costly! So is 
O(D(n)) any good? 
 Can show that D(n) = O(lg n)    (proof omitted) 

 So amortized cost = O(lg n) 



 Decrease key of element x to k 
 Case 0:  min-heap property not violated 
 decrease key of x to k 
 change heap min pointer if necessary  

Decrease Key 
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 Case 1:  parent of x is unmarked 
 decrease key of x to k 
 cut off link between x and its parent, unmark x if marked 
 mark parent 
 add tree rooted at x to root list, updating heap min pointer 
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 Case 1:  parent of x is unmarked 
 decrease key of x to k 
 cut off link between x and its parent, unmark x if marked 
 mark parent 
 add tree rooted at x to root list, updating heap min pointer 
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 Case 1:  parent of x is unmarked 
 decrease key of x to k 
 cut off link between x and its parent, unmark x if marked 
 mark parent 
 add tree rooted at x to root list, updating heap min pointer 

 



 Case 2:  parent of x is marked 
 decrease key of x to k 
 cut off link between x and its parent p[x], add x to root list, unmark x if 

marked 
 cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if 

marked 
 If p[p[x]] unmarked, then mark it and stop 
 If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked 

node found or root reached 
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 Case 2:  parent of x is marked 
 decrease key of x to k 
 cut off link between x and its parent p[x], add x to root list, unmark x if 

marked 
 cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if 

marked 
 If p[p[x]] unmarked, then mark it and stop 
 If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked 

node found or root reached 
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 Case 2:  parent of x is marked 
 decrease key of x to k 
 cut off link between x and its parent p[x], add x to root list, unmark x if 

marked 
 cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if 

marked 
 If p[p[x]] unmarked, then mark it and stop 
 If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked 

node found or root reached 



26 

17 

30 

23 

7 

21 

52 

39 

18 

41 

38 

88 

5 15 24 

72 

  min[H] 

Decrease 35 to 5: FINAL HEAP 

 Case 2:  parent of x is marked 
 decrease key of x to k 
 cut off link between x and its parent p[x], add x to root list, unmark x if 

marked 
 cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if 

marked 
 If p[p[x]] unmarked, then mark it and stop 
 If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked 

node found or root reached (cascading cut) 



 
Fib-Heap-Decrease-key(H, x, k) 
1. if k > key[x]  
2.         error “new key is greater than current key” 
3. key[x] = k 
4. y ← p[x] 
5. if y ≠ NIL and key[x] < key[y] 
6.        { CUT(H, x, y) 
7.           CASCADING-CUT(H, y) } 
8.  if key[x] < key[min[H]] 
9.       min[H] = x 
  



CUT(H, x, y) 
 1. remove x from the child list of y, decrement degree[y] 
 2. add x to the root list of H 
 3. p[x] = NIL 
 4. mark[x] = FALSE   
 
CASCADING-CUT(H, y) 
1. z ← p[y] 
2. if z ≠ NIL  
3.       if mark[y] = FALSE  
4.                mark[y] = TRUE 
5.       else  CUT(H, y, z) 
6.      CASCADING-CUT(H, z) 



Amortized Cost of Decrease Key 
 Actual cost 
 O(1) time for decreasing key value, and the first cut of x 
 O(1) time for each of c cascading cuts, plus reinserting in root 

list 
 Total  O(c) 

 Change in Potential 
 H = tree just before decreasing key, H’ just after 
 t(H') =  t(H) + c 
 t(H) + (c-1) trees from the cascading cut + the tree rotted at x 

 m(H') ≤  m(H) – c + 2 
 Each cascading cut unmarks a node except the last one (–(c – 1)) 
 Last cascading cut could potentially mark a node (+1) 

 



 Change in potential   
 = (t(H’) + 2m(H’)) – (t(H) + 2m(H)) 
  ≤  c + 2(– c + 2)  =  4 – c 
 
 Amortized cost = actual cost + potential change 

  = O(c) + 4 – c = O(1) 
 



 Delete node x 
 Decrease key of x to – ∞ 
 Delete min element in heap 

 

 Amortized cost 
 O(1) for decrease-key. 
 O(D(n)) for delete-min. 
 Total O(D(n)) 
 Again, can show that D(n) = O(lg n) 
 So amortized cost of delete = O(lg n) 

Deleting an Element 
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