
Amortized Analysis
CS31005: Algorithms-II

Autumn 2020
IIT Kharagpur

Motivation

 You have seen many data structures, each with a set of operations defined on
them

 You have done time complexity analysis
 Worst case time complexity – worst case time for one execution of an operation
 Ex. Insert in a heap, search in a BST,….

 Average case time complexity – average time of one execution of an operation
over all inputs
 This is usually done by imposing a probability distribution on the inputs (usually

uniform distribution, meaning all inputs are equally likely), and calculating the
expected time of execution of the operation over all inputs

 But sometimes, we are interested in considering a set of operations together
 The set may consist of multiple executions of same or different operations
 Trivial worst case complexity analysis will multiply the worst case time of each

operation with the number of that operation and sum everything up
 This may not be tight
 Operations may depend on each other in some ways to affect their time
 All executions of the same operation in the sequence may not incur the worst case

time

 Question: Can we find the average time of an operation in a sequence of
operations?

 Example: think of the Disjoint Set (Union-Find) data structure you have studied
earlier
 Represents a set of disjoint sets, each set with a unique id (usually the id of one of the

elements in the set
 Two operations
 find(x) – returns the id of the set the element x belongs to
 union(x, y) – merges the set containing element x and the set containing element y into a

single set

 Forest implementation of disjoint set
 Represent each set as a rooted tree, with id of the set = element at root
 find(x) – traverse the path from x to root to find root and return
 Also does path compression while doing find() so that subsequent calls take less time

 union(x, y) – add one root as child of the other root
 Different techniques as to who goes as child of who

 Read from text if you have forgotten

 find(e) also does path compression, so subsequent calls to say find(b) will take
less time

 So if you have a given sequence of finds and unions, can you find the average
time per operation (its amortized time) in the set?

 Example: For Kruskal’s MST algo, you have a sequence of 2|E| find
operations (for each vertex of an edge when you try to check if the edge will
create a cycle or not) and (|V|-1) union operations (one for each edge you
add to the MST)

f ha

b

c

d

e

g
find(e)

i

f ha

c

d
e

g

b

i

Amortized Analysis

 Considers a sequence of operations on a given data structure
 Computes the average cost over a sequence of operations
 Guarantees the avg. performance of each operation in the worst case for that

sequence of operations

 Note the difference from average case complexity analysis
 Unlike average case complexity analysis, no involvement of probability
 Guarantee the average performance of each operation among the sequence in worst

case, even if some operations in the sequence are costlier than others
 This is somewhat confusing to understand at first, so let us look at examples

Examples we will look at: Multipop Stack
 A stack that allows more than one element at in a single pop

 Main operations on a multipop stack

PUSH(S,x): pushes object x onto stack S

POP(S): pops the top of stack S and return the popped object

MULTIPOP(S, k): pops the top k objects of stack S
{

While not STACK-EMPTY(S) and k≠0
do POP(S)

k ← k-1
}

 PUSH and POP can be implemented in O(1) time

 MULTIPOP (S, k) can be implemented in O(k) time

 Consider a sequence of n PUSH, POP, MULTIPOP
 Total number of operations is n

 The n operations can be any mix of PUSH, POP, MULTIPOP

 A simple time complexity analysis
 The worst case time for a MULTIPOP in the sequence is O(n), since the stack size is at

most n.

 Hence the worst case time of the sequence is O(n2)

 This is correct, but not tight
 One obvious issue with this analysis: all n operations cannot be MULTIPOP!

Another Example: Binary Counter Increment

 Simple k-bit binary counter, with A[0] as lowest order bit and A[k-1] as highest
order bit

Increment(A)
{

i ← 0;
while i<length[A] and A[i]=1

do A[i] ← 0;
i ← i+1;

if i<length[A] then A[i] ← 1;
}

A[7]A[6]A[5]A[4]A[3]A[2]A[1]A[0]
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0

 Consider a sequence of n increments

 Simple time complexity analysis

 Worst case time for one Increment operation is O(k) (when A contains all 1s)

 Hence time for a sequence of n executions is O(nk) (Assuming initial value of 0)

Again, this is correct, but not tight

 Note that not every bit changes in every increment

 Can this be used to find a better bound?

Techniques for Amortized Analysis
 Aggregate analysis

 First find total cost of n operations, then divide by n to find amortized cost

 Accounting method
 Assign each type of operation an (different) amortized cost
 Overcharge some operations
 Store the overcharge as credit on specific objects
 Use the credit for compensation for some later operations

Potential method
 Same as accounting method
 But store the credit as “potential energy” as a whole on the data structure (not on specific
operations)

 We will apply each of these methods on multipop stack and binary counter examples

Aggregate Analysis
 Find the worst case time T(n) for a sequence of n operations

 Amortized cost (average cost) per operation is then T(n)/n

Aggregate Method; Multipop Stack
 Consider a sequence of n PUSH, POP, MULTIPOP operations on an initially empty

stack
 MULTIPOPS are just a sequence of POPs, so analysis can consider only number

PUSH and POPs (either a direct POP or a POP within a MULTIPOP)
 Each element pushed can be popped at most once (either in a direct POP or a POP

within a MULTIPOP)
 So the no. of POP operations (including the ones inside MULTIPOP) ≤ number of

PUSH
 So the total time is at most O(n) (since PUSH and POP are each O(1))
 Hence the average cost of an operation is O(n)/n = O(1)
 We say that the amortized cost of a PUSH, POP, or MULTIPOP in a sequence of n

such operations is O(1)

Aggregate Method: Binary Counter
 Total time is bounded by the total number of bit flips
 But each bit does not flip on each increment
 A[0] flips every time (total n times)
 A[1] flips every other time (total n/2 times)
 A[2] flips every fourth time (total n/4 times)
 ….
 for i=0,1,…,k-1, A[i] flips n/2i times

 Thus total number of bit flips is
∑𝑖𝑖=0𝑘𝑘−1 ⁄𝑛𝑛 2𝑖𝑖 < 𝑛𝑛∑𝑖𝑖=0∞ ⁄1 2𝑖𝑖 = 2n

So the total running time is < 2n
So amortized cost for an increment operation is O(1)

Accounting Method
 Basic Idea
 Assign differing charges to different operations
 The amount of the charge is called the amortized cost of that operation
 Amortized cost of an operation can be more or less than actual cost
 When amortized cost > actual cost, the difference is saved in specific objects as

credits
 The credits can be used by later operations whose amortized cost < actual cost
 As a comparison, in aggregate analysis, all operations have same amortized costs
 We do not assign an amortized cost at the beginning for any operation, we get the

total cost and divide by the number of operation, irrespective of what those
operations are

 Conditions to be satisfied by assigned amortized costs
 Suppose actual cost is ci for the i-th operation in the sequence, and amortized cost

is ci’
 For any sequence of operations, the total amortized cost should be an upper

bound of total actual cost

∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖′ ≥ ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖
 Otherwise the worst case time obtained using amortized analysis is not really the

worst case!

 The total credits at any point should be non-negative
∑𝑖𝑖=1𝑡𝑡 𝑐𝑐𝑖𝑖′ - ∑𝑖𝑖=1𝑡𝑡 𝑐𝑐𝑖𝑖 ≥ 0 for any 0 < t ≤ n

 Otherwise, total amortized cost after t operations is less than the total actual cost, so
if the subsequent operations do not give enough credit to make up for it, the condition
of amortized cost being upper bound of actual cost will get violated

Accounting Method: Multipop Stack
 Actual cost of operations: PUSH = 1, POP = 1, MULTIPOP = min (|S|, k)
 Set amortized cost (charge) for operations as: PUSH = 2, POP = 0,

MULTIPOP = 0
 Intuition
 A POP cannot happen without a PUSH
 While pushing, pay cost 1 for the actual cost of PUSH, and leave a credit of 1 for

a POP (direct or within MULTIPOP) in case it is popped later
 If not popped, the credit stays, remember we only need an upper bound on the actual

cost
 So a POP later does not need to pay anything, it has already been paid by the

PUSH
 PUSH is overcharged (more than 1), POP/MULTIPOP is undercharged (less than 1)

 For a sequence of n PUSH, POP, MULTIIPOP operations, easy to see the
conditions hold
 After any step, amount of total credit never becomes negative
 If no. of POP (direct or in a MULTIPOP) = no. of PUSH, credit is 0
 If no. of POP < no. of PUSH, credit is > 0

 Total amortized cost ≥ total actual cost

 So total actual cost is bounded by total amortized cost = 2n

 So average cost per operation in the sequence = O(1)

Accounting Method: Binary Counter
Two types of flip operations: set to 1 (from 0) and set to 0 (from 1)
Assign amortized cost of $2 to “set to 1” flip (overcharge), assign $0 to “set to 0” flip
(undercharge)
 Intuition: whenever a bit is set, use $1 to pay the actual cost, and store another $1 on the
bit as credit (to be used for it to be set to 0 later)
 If it is not set to 0, stays as credit

When a bit is set to 0, the stored $1 pays the cost
 Satisfies the conditions
Total credit at any time = no. of 1’s in the bit pattern, which is never negative
Total amortized cost ≥ total actual cost (easy to see, as a bit cannot be set to 0 unless it
has been set to 1 earlier)

At most one bit is set to 1 in each operation, so the amortized cost of an operation is
at most $2
Thus, total amortized cost of n operations is O(n), and average is O(1)

Potential Method
 Similar idea as in Accounting method
 Use prepaid work to pay for later work

 Difference
 Store the prepaid work as potential energy or potential, instead of credit
 The potential is associated with the data structure as a whole rather than with

specific objects within the data structure

 Initial data structure D0

 n operations, resulting in D0, D1,…, Dn with costs c1, c2,…, cn

 A potential function Φ: {Di} R (real numbers)
Φ(Di) is called the potential of Di

 So the potential of the data structure changes as operations are done on it

 Amortized cost ci' of the i-th operation is:

ci' = ci + Φ(Di) – Φ(Di-1) (actual cost + potential change)

 Total amortized cost

∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖′ = ∑𝑖𝑖=1𝑛𝑛 (𝑐𝑐𝑖𝑖 + Φ(Di) – Φ(Di-1))

= ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖 + Φ(Dn) – Φ(D0)

 We want the total amortized cost to be an upper bound of the total actual
cost
 So we need Φ(Dn) ≥ Φ(D0)
 But this has to be true for any n, so we need Φ(Di) ≥ Φ(D0) for any i
 Define Φ(D0)=0,and so Φ(Di) ≥0, for all i

 If the potential change is positive (i.e., Φ(Di) - Φ(Di-1)>0), then ci' is an
overcharge (so store the increase as potential)

 Otherwise, undercharge (discharge the potential to pay the extra actual cost)

Potential Method: Multipop Stack
 Assign Potential = number of elements in stack
 So Φ(D0)=0, and Φ(Di) ≥ 0
 Amortized cost of stack operations
 PUSH
 Potential change = (|S|+1) – |S| = 1
 Amortized cost = actual cost + potential change = 1 + 1 = 2

 POP
 Potential change = (|S| – 1) – |S| = -1
 Amortized cost = actual cost + potential change = – 1 + 1 = 0

 MULTIPOP(S, k): let k’ = min(|S|, k)
 Potential change = – k’
 Amortized cost = actual cost + potential change = k’ + (– k’) = 0

 Total amortized cost per operation is O(1)
 Hence total amortized cost for n operations is O(n)
 So average cost per operation is O(1)
 Total amortized cost is an upper bound of total actual cost

Potential Method: Binary Counter
 Assign potential of the k-bit counter after i-th increment
Φ(Di) = bi , the number of 1’s in the counter

 So Φ(Di) ≥ 0 for any i (no. of 1’s can never be negative in
the counter)

 Computing the amortized cost of an increment
 Suppose the i-th operation resets ti bits
 Actual cost ci of the operation is at most ti +1
 = ti for the overflow case when all bits are already 1

 If bi=0, then the i-th operation resets all k bits, so bi-1= ti
= k
 Again this is the overflow case, so previous value must be all 1’s

 If bi > 0, then bi = bi-1 – ti+1
 In either case, bi ≤ bi-1 – ti+1

 So potential change is Φ(Di) – Φ(Di-1) ≤ bi-1 – ti + 1 – bi-1=1 – ti
 So amortized cost is: ci' = ci + Φ(Di) – Φ(Di-1)≤ ti +1+1 – ti=2

 The total amortized cost of n increments is O(n)
 Thus average cost per increment is O(1)

	�Amortized Analysis
	Motivation
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Amortized Analysis
	Examples we will look at: Multipop Stack
	Slide Number 9
	Another Example: Binary Counter Increment
	Slide Number 11
	Techniques for Amortized Analysis
	Aggregate Analysis
	Aggregate Method; Multipop Stack
	Aggregate Method: Binary Counter
	Accounting Method
	Slide Number 17
	Accounting Method: Multipop Stack
	Slide Number 19
	Accounting Method: Binary Counter
	Potential Method
	Slide Number 22
	Slide Number 23
	Potential Method: Multipop Stack
	Slide Number 25
	Potential Method: Binary Counter
	Slide Number 27

