
Randomized Algorithms

CS31005: Algorithms-II
Autumn 2020
IIT Kharagpur

Randomized Algorithms
 Algorithms that you have seen so far are all deterministic

 Always follows the same execution path for the same input

 Randomized algorithms are non-deterministic
 Makes some random choices in some steps of the

algorithms
 Output and/or running time of the algorithm may depend

on the random choices made
 If you run the algorithm more than once on the same input

data, the results may differ depending on the random
choice

A Simple Example: Choosing a Large
Number

 Given n numbers, find a number that is ≥ median
 Simple deterministic algorithm takes O(n) time
 A simple randomized algorithm:

 Choose k numbers randomly, k < n, and output the
maximum

 Runs faster
 But this may not give the correct result always

 But the probability that an incorrect result is output is less
than

1

2𝑘𝑘

 Somewhat trivial example, but highlights the essence of a
large class of randomized algorithms

Types of Randomized Algorithms

 Monte Carlo Algorithms
 Randomized algorithms that always has the same time

complexity, but may sometimes produce incorrect outputs
depending on random choices made
 Time complexity is deterministic, correctness is probabilistic

 Las Vegas Algorithm
 Randomized algorithms that never produce incorrect

output, but may have different time complexity depending
on random choices made (including sometimes not
terminating at all)

 Time complexity is probabilistic, correctness is
deterministic

Monte Carlo Algorithms

Monte Carlo Algorithms

 May sometimes produce incorrect output
 But will always terminate with same time complexity

(usually polynomial to be of interest)
 Let p = probability that it will produce incorrect output
 Idea:

 Design the algorithm such that p ≤ ½

1

2
 Run the algorithm k times on the same input
 Probability that it will produce incorrect output on all k

trials ≤
1

2𝑘𝑘

 Can make the probability of error arbitrarily small by
making k sufficiently large

Example: Primality Testing
 A decision problem: decide whether a given positive

integer n is prime or not
 Without loss of generality, we will assume n is odd

 Very important problem in practice
 Known polynomial time algorithm has high complexity,

takes too much time in practice
 Many good randomized algorithms designed

 Basic Idea of randomized algorithms for primality testing
 Try to find “witness of compositeness” randomly

 A number such that know number-theoretic tests applied on
it can prove that n is composite

 If no witness can be found in large enough number of tries,
declare n as prime

 Problem: A composite number may be declared as prime
if the random choices fail to choose a witness in every try
 So the Yes answer may be wrong

 But a prime is never declared as composite
 So the No answer is always correct

 Monte Carlo algorithms like this for decision problems
are said to have one-sided error
 One of the Yes/No answers may be wrong, but not both

 How can we make the probability of declaring a
composite as prime (incorrect output) small?
 Choose the witness type that you want to use such that

there is an “abundance of witnesses” in the space from
which the witness is chosen

 If you choose from a space of size N, and you know a lower
bound m on the number of witnesses of compositeness in
that space, then the probability of incorrect output in each

try is upper bounded by 1− 𝑚𝑚

𝑁𝑁

 Choose witness type so that m is proven to be large

 Simplest witness of compositeness: factor of n
 Algorithm:

 Pick an integer x randomly from 3 to 𝑛𝑛

 Check if x is a factor of n
 If no, output Yes, else output No

 Problem: factors are not abundant
 33 has only 2 factors, 3 and 11
 81 has only 3 factors, 3, 9, and 37
 In general, m is very small compared to N

 So this is not a good type of witness to use

 Witness: Fermat Witness
 Fermat’s Theorem: If n is prime and p is an integer co-prime

to n, then 𝑎𝑎𝑛𝑛−1 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛)

 But the inverse is not true, so this is a necessary condition for
n to be prime, but not sufficient

 There exists composite numbers that satisfy this for some a
 Example: n = 15 and a = 4
 n is said to be a pseudoprime to base a

 Fermat witness of compositeness: An integer a ∈ ℤ𝑛𝑛
+such

that
 𝑔𝑔𝑔𝑔𝑚𝑚 𝑎𝑎,𝑛𝑛 ≠ 1 or 𝑎𝑎𝑛𝑛−1 ≢ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛)

 Algorithm:
 Pick an integer a at random from ℤ𝑛𝑛+

 Check if 𝑔𝑔𝑔𝑔𝑚𝑚 𝑎𝑎,𝑛𝑛 = 1 and 𝑎𝑎𝑛𝑛−1 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛)

 If yes, output Yes, else output No
 How many such a’s can be there in ℤ𝑛𝑛+?

Theorem: If there exists a Fermat witness for a composite integer
n >1 which is relatively prime to n, then more than half of the
integers from 2 to n−1 are Fermat witnesses for n

 So the probability of incorrect output <
1

2

 And we can make it arbitrarily low by repeating the
algorithm sufficient number of times

 So looks like a good algorithm, right?

 Problem: Carmichael numbers
 A composite integer n that does not have any Fermat

Witness
 The algorithm will always classify them as primes

irrespective of any random choices made

 So the algorithm works for all integers except
Carmichael numbers
 Carmichael numbers are not abundant but still infinite

 only 7 below 10000, and increasingly rare as the numbers
grow large)
 For example, only 585,355 below 1017

 No efficient algorithm known to detect if an integer is a
Carmichael number

Miller-Rabin Algorithm
 Uses the following result in addition to Fermat’s test:

If 𝑥𝑥2 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) has any solution other than the trivial
solutions 𝑥𝑥 ≡ ±1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛), then n must be composite

 Write n –1 = 2km, with odd m

 Choose a coprime to n
 Repeatedly square am and check if a non-trivial square

root exists or not
 Compute 𝑎𝑎𝑚𝑚 21, 𝑎𝑎𝑚𝑚 22, 𝑎𝑎𝑚𝑚 23,…, 𝑎𝑎𝑚𝑚 2𝑘𝑘

= 𝑎𝑎𝑛𝑛−1

 Check if there exists j such that 𝑎𝑎𝑚𝑚 2𝑗𝑗−1 ≢ 1𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛

but 𝑎𝑎𝑚𝑚 2𝑗𝑗 ≡ 1𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛

Miller-Rabin Algorithm
Write n –1 = 2km, where k ≥1 and m is odd
Randomly choose a, 1 < a < n
If gcd(a, n) ≠ 1 declare n as composite
b0 = am mod n
If b0 = ±1, stop and declare n as prime
For j = 1 to k – 1

Compute bj = (bj –1)
2

If bj = 1 mod n /* non-trivial root found */
stop and declare n as composite

If bj = –1 mod n, stop and declare n as prime
Declare n as composite

 Can be shown that if n is composite, then at least
3

4

𝑡𝑡ℎ
of

the numbers in 1 < a < n are witnesses of
compositeness

 So probability of incorrect output ≤
1

4

 Can repeat t times to reduce probability of incorrect

output to ≤
1

4

𝑡𝑡

 Works for all numbers, including Carmichael numbers

Example: Finding a Minimum Cut
 Input: An undirected connected graph G = (V, E)
 A cut in a graph is a partition of V into two sets S and (V – S)

 Denoted as (S, V–S)
 Size of a cut is the number of edges with one endpoint in S and

the other endpoint in V – S
 Minimum cut: The cut with the minimum size

 Also defined as the least cardinality subset E1 in E that
disconnects G

 Can be found by repeated max-flow as we have seen
 Best known complexity O(|V|3)

 Karger’s algorithm – a simple and elegant Monte Carlo
randomized algorithm that works faster

Karger’s Algorithm

While |V| > 2
Randomly pick an edge (u,v) in E

Contract u and v into a single vertex uv
Return the set of edges in E between the two
final vertices left as the minimum cut

 What does contracting (u, v) mean?
 Add a node uv to V and remove nodes u and v from V

 So V = V – {u, v} + uv
 For each edge (u,w) in E for any w ≠ v, remove (u,w) from

E and add (uv, w) to E. Same for each edge (v, x) for any x
≠ u. Remove all edges between u and v from E

 Note: This can result in parallel edges (more than one
edge between same two nodes). Keep the parallel edges.

a

b

c

e

d

f

a

b

c

de

f

ab

c

de

f

abc

de

f

abcde

f

contract (abc,de)

contract (a,b)

contract (ab,c)

contract (d,e)

minimum cut found =({abcde}, {f})

 But this may not always give the minimum cut
 Note that an edge disappears when you contract its

endpoints
 So if the algorithm picks an edge from the actual minimum

cut, nodes from the two sides of the minimum cut are
merged, and at least one edge of the minimum cut
disappears

 So then why do this?
 The chance of picking an edge in the minimum cut is low

 Minimum cut has the smallest number of edges among all
cuts

 So more likely to get minimum cut than a non-minimum
cut

 But need to quantify “more likely”
 What is the probability of getting a minimum cut?

Analysis
 Let |V| = n and |E| = m
 We know that sum of degrees of all nodes = 2m

 So average degree of a node =
2𝑚𝑚

𝑛𝑛

 Then, the size of the minimum cut can be at most
2𝑚𝑚

𝑛𝑛
 Consider the cut that separates the minimum degree node from

the other nodes

 Since average degree =
2𝑚𝑚

𝑛𝑛
, minimum degree of a node ≤

2𝑚𝑚

𝑛𝑛

 So need to remove only at most
2𝑚𝑚

𝑛𝑛
edges to separate this node

from the rest of the graph
 Minimum cut size cannot be greater than this, as this is also a

cut

 So the chance that an edge picked belongs to the minimum

cut is at most
2

𝑛𝑛

 Total m edges to choose from, at most
2𝑚𝑚

𝑛𝑛
of which can

belong to a minimum cut

 Probability of finding a minimum cut = Probability that
none of the random choices choose an edge from the
minimum cut

≥ 1 −
2

𝑛𝑛
1 −

2

𝑛𝑛−1
1−

2

𝑛𝑛−2
…(1−

2

3
)

=
𝑛𝑛−2

𝑛𝑛
×

𝑛𝑛−3

𝑛𝑛−1
×

𝑛𝑛−4

𝑛𝑛−2
×⋯

2

4
.
1

3

=
2

𝑛𝑛(𝑛𝑛−1)
>

2

𝑛𝑛2

 So probability of not finding a minimum cut in one run is

< (1 −
2

𝑛𝑛2
)

 This is not very good if n is large

 So improve the probability by running the algorithm k
times
 Take the best cut (minimum size) from the k runs
 Probability of not getting a minimum cut after k runs is

less than (1−
2

𝑛𝑛2
)𝑘𝑘

 We know that for any x ≥ 1,

1−
1

𝑥𝑥

𝑥𝑥
≤

1

𝑒𝑒

 So if we run the algorithm n2 number of times and take
the minimum among the minimum cuts reported in all
these runs, the probability that it will not be a minimum

cut is ≤ (1− 2

𝑛𝑛2
)𝑛𝑛

2
≤
1

𝑒𝑒
(independent of n)

 So success probability > 1/2

 If we run it 𝑛𝑛2𝑙𝑙𝑛𝑛(𝑛𝑛) times, the probability of not getting

a minimum cut is ≤
1

𝑒𝑒

𝑙𝑙𝑛𝑛(𝑛𝑛)
≤
1

𝑛𝑛

 Finds the minimum cut with “high probability”

 But what about running time?
 Each run can be implemented in O(|V|2) time with

adjacency matrix
 So total O(|V|4) time for n2 runs

 O(|V|4lg|V|) if we want the success probability to be
higher

 But we already have a deterministic algorithm with lower
complexity
 So need to improve running time of Karger’s algorithm if it is

to be useful

Karger-Stein Algorithm
 Improvement over Karger’s algorithm to improve running

time
 Key Idea:

 Chance of choosing a minimum cut edge increases as more and
more edges are picked, as the number of edges remains the same
but the number of nodes decreases

 So do not run the algorithm till 2 vertices directly, as that
increases the probability of failure at the later stages too much

 Rather, run till the probability of the minimum cut being still
there is ≥

1

2
(Step 1). Then run two instances of the algorithm

recursively on the remaining graph and take the minimum (Step
2)

 So later stages that are more likely to contract a minimum cut
edge are repeated more often, reducing chance of error

 The probability that the minimum cut stays after the 1st i
steps (no min cut edges chosen)

=
𝑛𝑛−2

𝑛𝑛
×

𝑛𝑛−3

𝑛𝑛−1
×

𝑛𝑛−4

𝑛𝑛−2
×⋯

𝑛𝑛−𝑖𝑖−1

𝑛𝑛−𝑖𝑖+1
×

𝑛𝑛−𝑖𝑖−2

𝑛𝑛−𝑖𝑖
≥

𝑛𝑛−𝑖𝑖 2

𝑛𝑛2

 Till how long does this probability stay ≥
1

2
?

 Approximately till i =
𝑛𝑛

�2 2−1

 This corresponds to having (n – i) =
𝑛𝑛

2
nodes left

 So in the first step, run till
𝑛𝑛

2
nodes left

Karger-Stein(G,n)

/* n0 is a small constant */

if (n < n0) find the minimum cut by brute force

else

G’ = G contracted down to
𝑛𝑛

2
vertices

(S1, V – S1) = Karger-Stein(G’,
𝑛𝑛

2
)

(S2, V – S2) = Karger-Stein(G’,
𝑛𝑛

2
)

Choose the cut with minimum size
between (S1, V – S1) and (S2, V – S2)

 Can show that the probability of finding a minimum cut
is Ω �1 𝑙𝑙𝑙𝑙𝑛𝑛

 Time complexity:
T(n) = c if n ≤ n0

= 2T(
𝑛𝑛

2
) + O(𝑛𝑛2) otherwise

Solving by Master theorem gives
T(n) = O(n2lgn)

Big improvement over Karger’s algorithm
 If we run ln2n times, can reduce the probability of failure

to ≤
1

𝑛𝑛

 Time complexity O(n2lg3n)

Las Vegas Algorithm

Las Vegas Algorithm
 Randomized algorithms that always produces correct

output, but whose time complexity can vary based on
random choices made

 So correctness is deterministic, time complexity is
probabilistic
 Expected running time is important (should be polynomial

to be of interest)
 Typical use

 Improve performance
 Ex.: Randomized quicksort, randomized selection

 Searching in solution space

Example: Randomized Quicksort

 X = set of n numbers to sort (assume that all numbers are
distinct for simplicity)

 Plain quicksort as you know it, with the difference that the pivot p
is chosen randomly at each step

 Expected time complexity analysis:
 Let T(n) denote running time of randomized quicksort with n

elements
 Then, T(n) = O(n + C), where C is the total number of

comparisons made in the partition (over all calls to quicksort,
initial and recursive)
 The n term comes because the number of recursive calls is O(n)
 Swaps don’t matter as it happens only as a result of comparison, so

its (constant) time can be counted as part of the comparison cost

 So E[(T(n)] = n + E(C)
 So what is E(C)?

 Let the elements of X in sorted order be x1, x2, …, xn

 Let Xij = {xi, xi+1, ….xj} 1 ≤ i < j ≤ n
 Note that each pair of elements in X can be compared at

most once during the algorithm
 Any two numbers xi and xj will be compared only if either

xi or xj is chosen as a pivot. If anything in between is chosen
as a pivot, they will never be compared as they will go into
different partitions. And once a number is chosen as a pivot,
it is eliminated from all subsequent recursive calls so never
compared with anything after that

Let Cij = 1 if xi is compared with xj, 0 otherwise

Then C = ∑𝑖𝑖=1
𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1

𝑛𝑛 𝐶𝐶𝑖𝑖𝑗𝑗

E[C] = ∑𝑖𝑖=1
𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1

𝑛𝑛 𝐸𝐸[𝐶𝐶𝑖𝑖𝑗𝑗] /* by linearity of expectation */

= ∑𝑖𝑖=1
𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1

𝑛𝑛 Pr[𝐶𝐶𝑖𝑖𝑗𝑗 = 1]

≤ ∑𝑖𝑖=1
𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1

𝑛𝑛 2

𝑗𝑗−𝑖𝑖+1
/* either xi or xj chosen as pivot */

= ∑𝑖𝑖=1
𝑛𝑛−1∑𝑘𝑘=1

𝑛𝑛−𝑖𝑖 2

𝑘𝑘

< ∑𝑖𝑖=1
𝑛𝑛−1∑𝑘𝑘=1

𝑛𝑛 2

𝑘𝑘

= ∑𝑖𝑖=1
𝑛𝑛−1𝑂𝑂(𝑙𝑙𝑔𝑔𝑛𝑛)

= 𝑂𝑂(𝑛𝑛𝑙𝑙𝑔𝑔𝑛𝑛)

 So E[T(n)] = 𝑛𝑛 + 𝑂𝑂(𝑛𝑛𝑙𝑙𝑔𝑔𝑛𝑛) = 𝑂𝑂(𝑛𝑛𝑙𝑙𝑔𝑔𝑛𝑛)

Example: A Coloring Problem

 Given:
 A set S of n items
 k sets S1, S2, …Sk ⊆ S (not necessarily disjoint) such that
 Si ≠ Sj for all i ≠ j
 |Si| = r for all i, where k ≤ 2r – 2

 Goal: color each item with one of two colors, red and
blue, such that each set Si contains at least one red and
one blue item

 Algorithm

Repeat until a valid coloring is found

Color each item either red of blue with probability
1

2

Check if the coloring obtained is a valid coloring

 Each iteration can be done in O(n + kr) time
 What is the expected number of iterations?

 Need to find the probability of obtaining a valid coloring

 Let Ei = event that all items of Si have color red

 Then Pr(Ei) =
1

2

𝑟𝑟

 Then Pr(⋃1
𝑘𝑘Ei) ≤ 𝑘𝑘

1

2

𝑟𝑟
≤ 2𝑟𝑟−2

1

2

𝑟𝑟
=
1

4

 Same for the event that all items of Si are blue
 Thus, probability of all items being red or blue in any one set

is ≤
1

2

 Hence, probability of getting a valid coloring in an iteration
is ≥

1

2

 Hence the expected number of iterations before getting a
valid coloring is 2

 Expected time complexity = O(n + kr)

Example: Bit Vector Search
 Input: A bit vector X[1..n]
 Goal: Output the index of a 1-bit
 Algorithm

Repeat
Choose i randomly between 1 and n
If A[i] = 1 output i and terminate

 May not terminate even if a 1-bit is there!
 But never gives a wrong index, so Las Vegas
 Typically in such cases, can stop the algorithm after a

polynomial number of iterations and output a messge
“solution cannot be found”

Relation between Monte Carlo and Las
Vegas Algorithms

Claim: Any Las Vegas algorithm with expected running time T can
be converted into a Monte Carlo algorithm with running time cT

and probability of error bounded by
1

𝑐𝑐
for any constant c > 0

How:
 Run the Las Vegas algorithm for cT steps
 If no result is found, output an arbitrary result
 So deterministic time bound, but answer may be incorrect

 How does this bound the error probability of the Monte
Carlo algorithm?
 Probability of getting an incorrect output in the Monte

Carlo algorithm = Probability of the Las Vegas algorithm not
terminating in cT steps

 Let X = random variable denoting time before termination
of the Las Vegas algorithm

 The error bound then follows directly from Markov Bound

[Markov Bound] Let X be a nonnegative random variable with
positive expected value. Then, for any constant c > 0,

Pr[X ≥ cE[X]] ≤
1

𝑐𝑐

Can be proved easily from definition of expectation

Randomized Data Structure:
Bloom Filter

Bloom Filters
 A randomized data structure for fast searching
 Keys represented in compressed storage as bit array
 Two operations supported – Insert and Search
 Search returns YES (present) or NO (not present)

 NO is always correct
 YES is correct with a probability
 Similar to Monte Carlo with one-sided error

 Many practical applications in networks, content search
etc.

Bloom Filter Operation

 A bit array A[0..m-1] of size m
 Initially all bits are set to 0
 A set of k random and independent hash functions h0, h1,

…,hk-1 producing a hash value between 0 and m – 1
 Insert key x

 Compute yi = hi(x) for i = 0, 1,….,k – 1
 Set A[yi] = 1 for i = 0, 1, …,k – 1
 (y0, y1, y2,…,yk-1) is called the signature of x

 Search for a key x
 Compute yi = hi(x) for i = 0, 1,…,k – 1
 Answer YES if A[yi] =1 for all i, NO otherwise

 NO answer is always correct
 If x was inserted, corresponding yi’s must have been set to

1 for all i

 YES answers may be correct
 yi’s may have been set to 1 due to insert of other keys
 Note that all of them must have been set to 1 by insert of

other keys
 Could be insert of more than one key, each setting some bits

Example
 m = 13, h0 = x mod m, h1 = 3x mod m

 Insert 23, y0 = 23 mod 13 = 10, y1 = 69 mod 13 = 4

0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 1 0 0 0 0 0 1 0 0

Example
 Insert 44, y0 = 5, y1 = 2

 Search for 23 or 44 obviously returns YES
 Search for 9, y0 = 9, y1 = 1, returns NO (both bits 0)
 Search for 11, y0 = 11, y1 = 5, returns NO (one bit 0)
 Search for 5, y0 = 5, y1 = 2, returns YES (both bits 1)

 But 5 was not inserted, so false positive

0 0 1 0 1 1 0 0 0 0 1 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

Probability of False Positive

 Note that each hash function sets each bit in A with the same

probability
1

𝑚𝑚

 The probability of setting a particular bit at least once during n

insertions = 1− 1−
1

𝑚𝑚

𝑘𝑘𝑛𝑛

 If a element u not inserted in the filter is searched, the k hash
functions will produce k indexes uniformly at random, each of
which is set with the above probability

 The probability of false positive = probability that all the k

locations are set to 1 = 1− 1−
1

𝑚𝑚

𝑘𝑘𝑛𝑛 𝑘𝑘

≈ 1− 𝑒𝑒−
𝑘𝑘𝑘𝑘

𝑚𝑚

𝑘𝑘

 Probability of false positive depends on
 Size m of bit vector

 Larger m is, smaller the probability of false positive
 Number of hash functions

 Too few hash functions increases the chance of two different
keys having the same signature, so higher chance of false
positive

 Too many hash functions set too many 1’s for each key, filling
up the bit vector fast, again increasing the chance of false
positive

Type of hash functions
 Should be random and independent

 Number of inserts n
 For many applications, this is known a-priori

 Example: content search in a memory cache that is first loaded from disk
and then searched on every query

 Reducing the probability of false positive
 Choosing number of hash functions k

 The probability is minimized with respect to k for 𝑘𝑘 ≈
𝑚𝑚

𝑛𝑛
𝑙𝑙𝑛𝑛2

 Use this to choose the number of hash functions k
 Choosing bit vector size m

 Minimized error probability = 2−𝑘𝑘 = 2−𝑙𝑙𝑛𝑛2
𝑚𝑚

𝑘𝑘

 If the desired error probability is p, we can solve for p to get

𝑚𝑚 ≈ −
𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛

𝑙𝑙𝑛𝑛22

 As we mentioned, n is usually known, so m can be chosen
suitably

	Randomized Algorithms
	Randomized Algorithms
	A Simple Example: Choosing a Large Number
	Types of Randomized Algorithms
	Monte Carlo Algorithms
	Monte Carlo Algorithms
	Example: Primality Testing
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Miller-Rabin Algorithm
	Miller-Rabin Algorithm
	Slide Number 16
	Example: Finding a Minimum Cut
	Karger’s Algorithm
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Analysis
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Karger-Stein Algorithm
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Las Vegas Algorithm
	Las Vegas Algorithm
	Example: Randomized Quicksort
	Slide Number 36
	Slide Number 37
	Example: A Coloring Problem
	Slide Number 39
	Slide Number 40
	Example: Bit Vector Search
	Slide Number 42
	Relation between Monte Carlo and Las Vegas Algorithms
	Slide Number 44
	Randomized Data Structure: �Bloom Filter
	Bloom Filters
	Bloom Filter Operation
	Slide Number 48
	Example
	Example
	Probability of False Positive
	Slide Number 52

