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Optimization Problems

• P is an optimization problem.

• OI is the set of possible output instances on an input I.

• f : OI → R is the objective function.

• Goal: To find an O∗ ∈ OI such that

[Minimization problem] f (O∗)6 f (O)

[Maximization problem] f (O∗)> f (O)

for all O ∈ OI .

• Ties may be broken arbitrarily.

• f (O∗) is denoted by OPTI or OPT.

• We say P is an optimization problem in NP if:

• It is easy to test the membership O ∈ OI .

• It is easy to compute f (O) for every O ∈ OI .
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Nondeterministic Polynomial-Time Optimization Algorithms

Nondeterministically generate candidates O.

Check whether O ∈ OI .

If yes, compute and return f (O).

• There is a mechanism to take the minimum or maximum of all the returned values.

• This is similar to logically OR-ing all the returned values of nondeterministic

algorithms for decision problems.

• If p = |OI|, then a common CRCW PRAM with p2 processors can compute the

minimum/maximum in O(1) time.

• This algorithm must run in polynomial time. Therefore the candidate-generation stage

should involve guessing only a polynomial number of bits.

• |OI| should therefore be at most an exponential function of the input size.
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Relation with Decision Problems

• Take an input I for P.

• Choose a bound B.

• The decision problem: Decide whether there exists an O ∈ OI such that

[Minimization problem] f (O)6 B,

[Maximization problem] f (O)> B.

• For appropriate choices of B, the decision problem is solvable in polynomial time if

and only if the optimization problem is solvable in polynomial time.

• The decision problem is in NP if and only if the optimization problem is in NP.

• Example: Let G be an undirected graph.

• MIN VERTEX COVER: Find a smallest vertex cover of G.

• VERTEX COVER: Given k, decide whether G has a vertex cover of size 6 k.
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Approximation Algorithms

• Let P be an optimization problem in NP.

• A is called an ρ-approximation algorithm for P if for all inputs I, A produces an
output O ∈ OI such that

[Minimization problem] f (O)6 ρ ×OPTI ,

[Maximization problem] f (O)> ρ ×OPTI .

• ρ is called the approximation ratio or the approximation factor.

• ρ is called tight if f (O) = ρ ×OPTI for some instances.

• For minimization problems, ρ > 1. For maximization problems, 0 < ρ < 1.

• Values of ρ close to 1 are preferable.

• We require A to run in time polynomial in the size n of the input. The running time of

A may also depend on ρ .

Note: Some authors define ρ = OPT/f (O) for maximization problems, so ρ > 1 for all

optimization problems.
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Minimum Vertex Cover

• G = (V,E) is an undirected graph.

• |V|= n and |E|= m.

• A vertex cover for G is a subset U ⊆ V such that every edge e ∈ E has at least one

endpoint in U.

• MIN VERTEX COVER: Find a vertex cover U with |U| as small as possible.

• MIN VERTEX COVER is in NP:

• It is easy to check whether U is a vertex cover.

• It is easy to count the size of any vertex cover U.
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A Logarithmic Approximation Algorithm for MIN VERTEX COVER

Initialize U = /0.

while (E is not empty) {
Find a vertex u ∈ V of largest (remaining) degree.

Add u to U.

Delete from E all the (remaining) edges with u as one endpoint.

}
Return U.

• This is a greedy algorithm.

• The running time is polynomial in n+m.
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Derivation of the Approximation Ratio

• Let |U|= k.

• Vertices added to U are u1,u2, . . . ,uk in that order.

• Let t = |U∗|.

• ρ = k/t.

• G0 = G.

• For 1 6 i 6 k, Gi = (V,Ei) is the graph after the edges incident upon u1,u2, . . . ,ui are

removed.

• mi = |Ei|, so m0 = m.
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Passage from Gi to Gi+1

• u1,u2, . . . ,ui contain ti of the t vertices of U∗.

• The remaining t− ti vertices of U∗ constitute a vertex cover of Gi.

• There exists vi+1 ∈ U∗ \{u1,u2, . . . ,ui} whose degree in Gi is > mi/(t− ti).

• deg(ui+1)> deg(vi+1) in Gi.

• mi+1 6 mi

(

1−
1

t− ti

)

6 mi

(

1−
1

t

)

.

• mi 6 m

(

1−
1

t

)i

.

• For i = t lnm, we have mi 6 m

(

1−
1

t

)t lnm

< m
(

e−1
)lnm

= 1.

• So k 6 t lnm, that is, ρ = k/t 6 lnm = Θ(logn).
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Tightness of ρ

T

. . .B B B Bt2 3 4B

• Bipartite graph.

• |T|= t.

• |Bi|= ⌊t/i⌋, so |B|=
t

∑
i=2

|Bi|=
t

∑
i=2

⌊t/i⌋.

• Each vertex in Bi is connected to i vertices in T .

• Vertices in Bi have mutually disjoint neighbor sets in T .
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Tightness of ρ
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Tightness of ρ

• |B|=
t

∑
i=2

⌊ t

i

⌋

6
t

∑
i=2

t

i
= t(Ht −1)6 t ln t.

• |B|=
t

∑
i=2

⌊ t

i

⌋

>
t

∑
i=2

t− (i−1)

i
= (t+1)

(

t

∑
i=2

1

i

)

− (t−1)> (t−1)(Ht −2)>

(t−1)(ln(t+1)−2).

• |U|= |B|= Θ(t log t).

• T is a vertex cover, so |U∗|6 |T|=
1

Θ(log t)
|U|.

• n = |V|= |B|+ |T|= Θ(t log t) ⇒ log t = Θ(logn) ⇒ ρ =
|U|

|U∗|
> Θ(logn).
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2-Approximation Algorithm for MIN VERTEX COVER

• Based on matching.

• D ⊆ E is called a matching if no two edges of D share an endpoint.

• Let D be any matching, and U any vertex cover.

• U must contain one endpoint of each edge in D.

• |D|6 |U|.

Initialize U = /0.

while (E is not empty) {
Pick any edge e = (u,v) from E.

Add u and v to U.

Remove u and v from V .

Remove from E all edges incident on u or v.

}
Return U.
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Example

U = {a,b} U = {a,b,c,d } U = {a,b,c,d,f,g }

f g

e

f g

edc edc

ba

f g
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Approximation Ratio

• Let D be the set of edges chosen in the loop.

• D is a matching in G.

• |U|= 2|D|.

• |D|6 |U∗|.

• |U|6 2|U∗|.

• ρ =
|U|

|U∗|
6 2.

• Tightness:

• Take G = Kn,n (complete bipartite graph).

• |U∗|= n.

• |U|= 2n.
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Minimum Set Cover

• X = {x1,x2,x3, . . . ,xm}.

• S1,S2,S3, . . . ,Sn ⊆ X with

n
⋃

i=1

Si = X.

• Take 1 6 i1 < i2 < · · ·< ik 6 n.

• Si1 ,Si2 , . . . ,Sik is a cover of X if

k
⋃

j=1

Sij = X.

• To find a cover of X with k as small as possible.

• Vertex cover is a special case of set cover.
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Logarithmic Approximation Algorithm for MIN SET COVER

Set U = /0.

While (X 6= /0) {
Find a subset S of maximum (current) size.

Add S to U.

Set X = X \S.

For all remaining subsets Si (including S itself) {
Set Si = Si \S.

If Si is empty, remove Si from the collection.

}
}
Return U.

• Similar to the greedy algorithm for MIN VERTEX COVER.

• Analysis is similar. ρ = Θ(logn).

Algorithms – II, Autumn 2020 Abhijit Das



Traveling Salesperson Problem (TSP)

• G = (V,E) is a complete undirected graph.

• Cost function c : E → R
+.

• c(u,v) = c(v,u) for all u,v ∈ V .

• To find a Hamiltonian cycle Z in G for which the sum c(Z) of all the edge costs on Z

is as small as possible.

• TSP is in NP:

• It is easy to check whether a vertex sequence is a Hamiltonian cycle.

• It is easy to compute the cost of a Hamiltonian cycle.

• EUCLIDEAN TSP:

• Vertices are points in the 2-dimensional plane.

• c(u,v) = d(u,v) (Euclidean distance).
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2-Approximation Algorithm for EUCLIDEAN TSP

Compute a minimum spanning tree T of G.

Choose an arbitrary vertex u1 of T .

Make a preorder traversal of T starting from u1.

Let W = (u1,u2,u3, . . . ,u2n−1) be the list of visited nodes.

Remove duplicates from this list.

Append u1 at the end to obtain the Hamiltonian cycle Z.

Return Z.
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Example
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(a) Location of the cities (b) Computation of an MST
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b
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(d) The TSP cycle

dd

(c) Preorder traversal of MST

f,e,c,e,d,e,g,e,f,a,b,a,f f,e,c,d,g,a,b,f
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Approximation ratio

• Z is a Hamiltonian cycle returned by the algorithm.

• Z∗ is an optimal Hamiltonian cycle.

• Removal of an edge from Z∗ gives a spanning tree of G.

• c(T)6 c(Z∗).

• c(W) = 2c(T).

• Duplicate removal:

• Change u,v,w to u,w.

• By the triangle inequality, c(u,v)+ c(v,w)> c(u,w).

• The cost of W does not increase by duplicate removals.

• c(Z)6 c(W) = 2c(T)6 2c(Z∗).

• ρ =
c(Z)

c(Z∗)
6 2.
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Inapproximability

Claim: For any constant ρ > 1, the existence of a polynomial-time

ρ-approximation algorithm for (the general) TSP implies P = NP.

Proof

• Let A be a (hypothetical) polynomial-time ρ-approximation algorithm for TSP.

• Let G = (V,E) be an instance of HAM-CYCLE with |V|= n.

• Consider the complete graph G′ = (V,E′) with costs c(e) =

{

1
n

if e ∈ E,

2ρ otherwise.

• Run A on G′.

• If G contains a Hamiltonian cycle, the optimal TSP tour has cost 1, so A returns a tour

of cost 6 ρ . This tour cannot contain an edge of cost 2ρ . Therefore A returns an

optimal TSP tour.

• If G does not contain a Hamiltonian cycle, any TSP tour must use at least one edge of

cost 2ρ > 2.

Algorithms – II, Autumn 2020 Abhijit Das



Linear Programming (LP)

• Let x1,x2, . . . ,xn > 0 be real-valued variables.

• The objective is to minimize/maximize a linear function

a1x1 +a2x2 + · · ·+anxn

subject to a set of linear constraints of the form

u1x1 +u2x2 + · · ·+unxn ≶ b,

where ≶ is =, 6 or >.

• Algorithms for solving LP:

• Simplex method

• Interior-point method
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Example

The objective function is f (x1,x2) = x1 −2x2 with x1,x2 > 0.

Six additional constraints:

C1 : x1 + x2 > 3,

C2 : 2x1 − x2 6 3,

C3 : x2 6 11,

C4 : x1 +2x2 6 32,

C5 : 4x1 −3x2 6 62,

C6 : x1 −5x2 6 3.
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Example
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Minimum Vertex Cover

• To find a minimum vertex cover U in G = (V,E).

• Introduce variables xu for all u ∈ V .

xu =

{

1 if u is included in the cover U,

0 otherwise.

• Objective: Minimize ∑
u∈V

xu.

• For each (u,v) ∈ E, add the constraint

xu + xv > 1.

• Note that xu are integer/Boolean-valued variables.
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Relaxation and Rounding

• Treat xu as real-valued variable.

• Let (xu)u∈V be a solution of the relaxed LP.

• Take xu =

{

0 if 0 6 xu < 0.5,

1 if 0.5 6 xu 6 1.

• Let (u,v) ∈ E. The constraint xu + xv > 1 implies that either xu = 1 or xv = 1 (or both).

• If xu < 0.5, we have 0 = xu 6 2xu. If xu > 0.5, we have 1 = xu 6 2xu.

• ∑
u∈V

xu 6 2 ∑
u∈V

xu.

• Variables x∗u corresponding to a minimum vertex cover satisfy all the constraints.

• ∑
u∈V

xu 6 ∑
u∈V

x∗u.

• ∑
u∈V

xu 6 2 ∑
u∈V

xu 6 2 ∑
u∈V

x∗u, so ρ 6 2.
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Good Approximation Ratios

• Can we achieve ρ = 1± ε with ε as small as we like?

• In certain cases, we can.

• Running time becomes a function of n and 1/ε .

• O(n1/ε) is polynomial in n if ε is constant, but not so if ε is 1/ logn or 1/n.

• O(n3/ε2) is polynomial in both n and 1/ε .

Definition: Let A be a (1± ε)-approximation algorithm.

• A is called a polynomial-time approximation scheme (PTAS) if its running time is

polynomial in n.

• A is called a fully polynomial-time approximation scheme (FPTAS) if its running

time is polynomial in n and 1/ε .
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Knapsack Problem

• We have n objects O1,O2, . . . ,On.

• Oi has weight wi and value (profit) pi.

• Assume that wi and pi are positive integers.

• There is a knapsack of capacity C.

• Goal: To pack a subcollection Oi1 ,Oi2 , . . . ,Oim of the given objects in the knapsack
such that:

1. the profit pi1 +pi2 + · · ·+pim of the packed objects is maximized, and

2. wi1 +wi2 + · · ·+wim 6 C.

• We may assume that each wi 6 C (discard objects that do not fit individually in the

knapsack).

• Obvious greedy strategies “most profitable first” and “maximum profit/weight first”

lead to arbitrarily bad solutions.
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A Dynamic-Programming Algorithm for KNAPSACK

• Let P = p1 +p2 + · · ·+pn. We populate an n×P table T .

• For 1 6 i 6 n and 1 6 p 6 P, the entry T(i,p) stores the weight of a lightest

subcollection of O1,O2, . . . ,Oi, whose profit is exactly p.

• If the profit p is not achievable by any subcollection, we store T(i,p) = ∞.

• Initialize the first row: T(1,p) =

{

w1 if p = p1,

∞ otherwise.

• For i > 1, we have T(i,p) =















T(i−1,p) if pi > p,

min
(

wi,T(i−1,p)
)

if pi = p,

min
(

wi +T(i−1,p−pi),T(i−1,p)
)

if pi < p.

• The maximum profit is max
16p6P

{

p | T(n,p)6 C
}

.
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Running Time

• First suppose that the weights and profits are single-precision integers.

• Let pmax = max(p1,p2, . . . ,pn), so P 6 npmax.

• Each entry T(i,p) can be stored O(logn) bits/words.

• There are nP 6 n2pmax entries in T .

• The total running time is therefore O(n2pmax logn).

• Now allow pi to be arbitrarily large.

• If 2l−1 6 pmax < 2l, each profit can be stored using l bits.

• The input size is O(nl).

• The running time is polynomial in n but exponential in l.
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An FPTAS for KNAPSACK

• Take a scaling-down factor σ .

• Consider the scaled-down profits p′i =
⌊pi

σ

⌋

.

• Run the dynamic-programming algorithm with the original weights and the

scaled-down profits.

• Since the weights are not changed, the capacity constraint is satisfied.

• Suppose that the algorithm returns the scaled-down total profit SOPT′. This is optimal

with respect to the scaled-down item profits p′i.

• We pack the same objects that achieve SOPT′ but consider the original profit values of

the objects. Call this total profit SOPT.

• Let OPT be the optimal total profit with the original pi.

• Let OPT′ be the scaled-down total profit of the objects that achieve OPT.

• We want SOPT > (1− ε)OPT.
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Determination of σ

• p′i =
⌊

pi

σ

⌋

⇒ p′i >
pi

σ −1 ⇒ σp′i > pi −σ ⇒ pi −σp′i 6 σ .

• Sum over all (say, k) objects corresponding to OPT: OPT−σOPT′ 6 kσ 6 nσ .

• p′i =
⌊

pi

σ

⌋

6 pi

σ ⇒ σp′i 6 pi.

• Sum over all objects corresponding to SOPT′: σSOPT′ 6 SOPT.

• SOPT′ is optimal for the scaled-sown profits: SOPT′ > OPT′.

• We have: SOPT > σSOPT′ > σOPT′ > OPT−nσ .

• We want: SOPT > (1− ε)OPT.

• This is fulfilled by any σ satisfying σ 6
ε ×OPT

n
.

• Since pmax 6 OPT, we take σ =
ε ×pmax

n
.
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Running Time

• The dynamic-programming algorithm with scaled-down profits runs in

O(n2p′max logn) time.

• p′max =
⌊pmax

σ

⌋

6
pmax

σ
=

n

ε
.

• So the running time is O

(

n3 logn

ε

)

.

• This is polynomial in both n and 1/ε .

• So this is an FPTAS for the knapsack problem.
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