Approximation Algorithms

Definitions and Examples

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

October 11, 2020

Algorithms — II, Autumn 2020 Abhijit Das

Optimization Problems

e P is an optimization problem.
e (O] is the set of possible output instances on an input /.

e f: 0; — Ris the objective function.

e Goal: To find an O* € &} such that
[Minimization problem] f(0*) < f(O)
[Maximization problem] f(0*) = f(0)

for all O € 0.

e Ties may be broken arbitrarily.

e f(0%) is denoted by OPT; or OPT.

e We say P is an optimization problem in NP if:

e It is easy to test the membership O € 0.
e Itis easy to compute f(O) for every O € 0}.

Algorithms — II, Autumn 2020 Abhijit Das

Nondeterministic Polynomial-Time Optimization Algorithms

Nondeterministically generate candidates O.
Check whether O € 0}.
If yes, compute and return f(O).

There is a mechanism to take the minimum or maximum of all the returned values.

This is similar to logically OR-ing all the returned values of nondeterministic
algorithms for decision problems.

If p = |0}, then a common CRCW PRAM with p? processors can compute the
minimum/maximum in O(1) time.

This algorithm must run in polynomial time. Therefore the candidate-generation stage
should involve guessing only a polynomial number of bits.

|0}| should therefore be at most an exponential function of the input size.

Algorithms — II, Autumn 2020 Abhijit Das

Relation with Decision Problems

e Take an input / for P.
e Choose a bound B.

e The decision problem: Decide whether there exists an O € 0y such that
[Minimization problem] f(0O) < B,
[Maximization problem] f(O) > B.

e For appropriate choices of B, the decision problem is solvable in polynomial time if
and only if the optimization problem is solvable in polynomial time.

e The decision problem is in NP if and only if the optimization problem is in NP.

e Example: Let G be an undirected graph.

e MIN_VERTEX_COVER: Find a smallest vertex cover of G.
e VERTEX_COVER: Given k, decide whether G has a vertex cover of size < k.

Algorithms — II, Autumn 2020 Abhijit Das

Approximation Algorithms

e Let P be an optimization problem in NP.
e A is called an p-approximation algorithm for P if for all inputs /, A produces an
output O € Oy such that
[Minimization problem] f(0) < p x OPTy,
[Maximization problem] f(O) = p x OPT;.

p is called the approximation ratio or the approximation factor.

p is called tight if f(O) = p x OPT; for some instances.

e For minimization problems, p > 1. For maximization problems, 0 < p < 1.

Values of p close to 1 are preferable.

We require A to run in time polynomial in the size n of the input. The running time of
A may also depend on p.

Note: Some authors define p = OPT/f(O) for maximization problems, so p > 1 for all
optimization problems.

Algorithms — II, Autumn 2020 Abhijit Das

Minimum Vertex Cover

G = (V,E) is an undirected graph.

|V| =nand |E| = m.

A vertex cover for G is a subset U C V such that every edge e € E has at least one
endpoint in U.

MIN_VERTEX_COVER: Find a vertex cover U with |U| as small as possible.
MIN_VERTEX_COVER is in NP:

o It is easy to check whether U is a vertex cover.

e It is easy to count the size of any vertex cover U.

Algorithms — II, Autumn 2020 Abhijit Das

A Logarithmic Approximation Algorithm for MIN_VERTEX COVER

Initialize U = 0.
while (E is not empty) {
Find a vertex u € V of largest (remaining) degree.
Adduto U.
Delete from F all the (remaining) edges with u as one endpoint.

}

Return U.

e This is a greedy algorithm.

e The running time is polynomial in n 4 m.

Algorithms — II, Autumn 2020 Abhijit Das

Derivation of the Approximation Ratio

e Let |U|=k.

e Vertices added to U are uy,uy,...,u; in that order.
o Letr=|U*|.

o p=k/t.

e Gy=0G.

e For 1 <i<k, G;=(V,E) is the graph after the edges incident upon u;,uy,...,u; are
removed.

e m; = |Ei|, SO my = m.

Algorithms — II, Autumn 2020 Abhijit Das

Passage from G; to G,

up,uy,...,u; contain t; of the r vertices of U*.
The remaining ¢t — #; vertices of U* constitute a vertex cover of G;.
There exists vir1 € U\ {u,uz, ... ,u;} whose degree in G; is > m;/(t — t;).

deg(u;11) > deg(vit1) in G;.

1 1
mi+1<mi<1—t_ti> <mi<1—t>.
0N
miém(l—t>.

1 tlnm In
Fori:tlnm,wehavemi<m<1—> <m(e_1) "_1.

t
So k < tlnm, that is, p = k/t < Inm = ©(logn).

Algorithms — II, Autumn 2020 Abhijit Das

Tightness of p

e Bipartite graph.
o |T|=1.
e |Bi|=t/i],so |B| = Z|B|—Z

i=2

Each vertex in B; is connected to i vertices in 7.

Vertices in B; have mutually disjoint neighbor sets in 7'

Algorithms — II, Autumn 2020 Abhijit Das

Tightness of p

Tightness of p

Tightness of p

Q
C
=
72]
N
=
=
N
=
=7
o

Abhijit Das

g
54
2
<
@
n
<

Q
C
=
72]
N
=
=
N
=
=7
o

Abhijit Das

g
54
2
<
@
n
<

Tightness of p

Algorithms — II, Autumn 2020 Abhijit Das

Tightness of p

Algorithms — II, Autumn 2020 Abhijit Das

Tightness of p

Algorithms — II, Autumn 2020 Abhijit Das

Tightness of p

Algorithms — II, Autumn 2020 Abhijit Das

Tightness of p

s 0=
I I
- -

o |U| = |B| = O(tlog?)
1
e T isa vertex cover, so |U*| < |T| = m]w.
U
e n=|V|=|B|+|T| =0O(tlogt) = logr=0O(logn) = p =]|U*‘] > O(logn).

Algorithms — II, Autumn 2020 Abhijit Das

2-Approximation Algorithm for MIN_VERTEX COVER

e Based on matching.

e D C Eis called a matching if no two edges of D share an endpoint.

Let D be any matching, and U any vertex cover.

U must contain one endpoint of each edge in D.

D] < |UI.

Initialize U = 0.
while (E is not empty) {
Pick any edge ¢ = (u,v) from E.
Adduandvto U.
Remove u and v from V.
Remove from E all edges incident on u or v.

}

Return U.

Algorithms — II, Autumn 2020 Abhijit Das

gorithms — IT, Autumn 2020 Abhijit Das

Approximation Ratio

Let D be the set of edges chosen in the loop.

D is a matching in G.

|Ul=2|D|.

DI < U],

Ul <2|U7|.

v
U]

Tightness:

e p <2.

e Take G = K,,, (complete bipartite graph).
o |U*|=n.
e |U|=2n.

Algorithms — II, Autumn 2020 Abhijit Das

Approximation Algorithms

More Examples

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

October 11, 2020

Algorithms — II, Autumn 2020 Abhijit Das

Minimum Set Cover

X = {x1,X2,X3, ..., Xm }

n
51,82,83,...,5, € X with |_JS; = X.
i=1
Take 1 < i1 <ip <--- < <n.

k
* S5i.,8i,...,Si is a cover of X if | J S, =X.
j=1

To find a cover of X with k as small as possible.

Vertex cover is a special case of set cover.

Algorithms — II, Autumn 2020 Abhijit Das

Logarithmic Approximation Algorithm for MIN SET COVER

Set U =0.
While (X #0) {
Find a subset S of maximum (current) size.

Add Sto U.
Set X =X\S.
For all remaining subsets S; (including S itself) {
Set S; = S; \S
If S; is empty, remove S; from the collection.
}
}
Return U.

e Similar to the greedy algorithm for MIN_VERTEX_COVER.
e Analysis is similar. p = ©(logn).

Algorithms — II, Autumn 2020 Abhijit Das

Traveling Salesperson Problem (TSP)

e G=(V,E) is a complete undirected graph.
e Cost function ¢ : E — R™.
e c(u,v) =c(v,u) forall u,v € V.

e To find a Hamiltonian cycle Z in G for which the sum ¢(Z) of all the edge costs on Z
is as small as possible.
e TSP isin NP:
e [tis easy to check whether a vertex sequence is a Hamiltonian cycle.

e It is easy to compute the cost of a Hamiltonian cycle.

e EUCLIDEAN_TSP:

e Vertices are points in the 2-dimensional plane.

e ¢(u,v) =d(u,v) (Euclidean distance).

Algorithms — II, Autumn 2020 Abhijit Das

2-Approximation Algorithm for EUCLIDEAN TSP

Compute a minimum spanning tree 7 of G.

Choose an arbitrary vertex u; of T.

Make a preorder traversal of T starting from u;.

Let W = (uy,up,us, ... ,ux,—1) be the list of visited nodes.
Remove duplicates from this list.

Append u; at the end to obtain the Hamiltonian cycle Z.
Return Z.

Algorithms — II, Autumn 2020 Abhijit Das

(c) Preorder traversal of MST (d) The TSP cycle
fecedeg.efab,af f,ec,d,g.ab,f

Algorithms — II, Autumn 2020 Abhijit Das

Approximation ratio

e Z is a Hamiltonian cycle returned by the algorithm.
e Z* is an optimal Hamiltonian cycle.
e Removal of an edge from Z* gives a spanning tree of G.
o ¢(T) <c(Z).
o c(W)=2¢(T).
e Duplicate removal:
e Change u,v,wto u,w.

e By the triangle inequality, c(u,v) + c(v,w) = c(u,w).
e The cost of W does not increase by duplicate removals.

o o(Z) < c(W) =2¢(T) < 2¢(Z").

Algorithms — II, Autumn 2020 Abhijit Das

Inapproximability

Claim: For any constant p > 1, the existence of a polynomial-time
p-approximation algorithm for (the general) TSP implies P = NP.

Proof

Let A be a (hypothetical) polynomial-time p-approximation algorithm for TSP.
Let G = (V,E) be an instance of HAM-CYCLE with |V| = n.

1 .

= fecE,
Consider the complete graph G’ = (V,E’) with costs ¢(e) = " ne i

2p otherwise.
Run A on G'.

If G contains a Hamiltonian cycle, the optimal TSP tour has cost 1, so A returns a tour
of cost < p. This tour cannot contain an edge of cost 2p. Therefore A returns an
optimal TSP tour.

If G does not contain a Hamiltonian cycle, any TSP tour must use at least one edge of
cost2p > 2.

Algorithms — II, Autumn 2020 Abhijit Das

Linear Programming (LP)

e Letx,xo,...,x, > 0 be real-valued variables.

e The objective is to minimize/maximize a linear function
aixy +axxy + - -+ apxy
subject to a set of linear constraints of the form
uixy +upxy + -+ gXy S b,

where S is =, < or 2.
o Algorithms for solving LP:

e Simplex method

e Interior-point method

ms — II, Autumn 2020 Abhijit Das

The objective function is f(x,x2) = x; — 2x, with xj,x; > 0.

Six additional constraints:

Ci @ x1+x 23,

C, 2x1—xp <3,
C; xp <11,

Cy : x1+2x <32,
Cs : 4x1—3x, <62,
Ce : x1—5x <3.

ms — II, Autumn 2020 Abhijit Das

Algorithms — II, Autumn 2020 Abhijit Das

Minimum Vertex Cover

To find a minimum vertex cover U in G = (V,E).

Introduce variables x,, for all u € V.

1 if u is included in the cover U,
X, =
“ 0 otherwise.

Objective: Minimize Z Xy
ucV

For each (u,v) € E, add the constraint

Xy+x, > 1.

Note that x,, are integer/Boolean-valued variables.

Algorithms — II, Autumn 2020 Abhijit Das

Relaxation and Rounding

e Treat x, as real-valued variable.

e Let (X,)ucv be a solution of the relaxed LP.

{0 if0 <%, <0.5,

e Take x, = .
1 if05<x,<1.

e Let (u,v) € E. The constraint X, + X, > 1 implies that either x, = 1 or x,, = 1 (or both).

1
e Ifx, < 0.5, we have 0 = x,, < 2x,. If x, > 0.5, we have 1 = x,, < 2X,,.

° qu<22@.

ucV ucV
e Variables xj, corresponding to a minimum vertex cover satisfy all the constraints.

° Z%ué fo,

ucV ueV
1 ZX”<2ZX“<ZZXZ’SOP<2'
ueV ueV ueV

Algorithms — II, Autumn 2020 Abhijit Das

Approximation Algorithms

Polynomial-Time Approximation Schemes

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

October 11, 2020

Algorithms — II, Autumn 2020 Abhijit Das

Good Approximation Ratios

e Can we achieve p = 1+ € with € as small as we like?

e In certain cases, we can.

Running time becomes a function of n and 1/¢.

O(n'/%) is polynomial in 7 if £ is constant, but not so if € is 1/logn or 1/n.

O(n?/€?) is polynomial in both n and 1 /.

Definition: Let A be a (1 & €)-approximation algorithm.

e A is called a polynomial-time approximation scheme (PTAS) if its running time is
polynomial in 7.

e A is called a fully polynomial-time approximation scheme (FPTAS) if its running
time is polynomial in n and 1/¢.

Algorithms — II, Autumn 2020 Abhijit Das

Knapsack Problem

e We have n objects O1,0,...,0,.

e (O; has weight w; and value (profit) p;.

e Assume that w; and p; are positive integers.
e There is a knapsack of capacity C.

e Goal: To pack a subcollection O;, O;,,...,0
such that:

of the given objects in the knapsack

Im

1. the profit p;, +p;, + -+ p;,, of the packed objects is maximized, and
2. wi +wi, + 4wy, <C.

e We may assume that each w; < C (discard objects that do not fit individually in the
knapsack).

e Obvious greedy strategies “most profitable first” and “maximum profit/weight first”
lead to arbitrarily bad solutions.

Algorithms — II, Autumn 2020 Abhijit Das

A Dynamic-Programming Algorithm for KNAPSACK

o LetP=p;+pr+---+p,. We populate an n x P table T.

e Forl <i<nand1<p<P, theentry T(i,p) stores the weight of a lightest
subcollectlon of 01,0;,...,0;, whose profit is exactly p.

e If the profit p is not achievable by any subcollection, we store 7T'(i,p) = co.

wy if p=p;,
e Initialize the first row: T'(1,p) = ! p p 1
oo otherwise.

e Fori> 1, we have T(i,p) = { min WiaT(i_lvp)) if pi =p,
min w,-+T(i—1,p—pl-),T(i—1,p)> if p; < p.

e The maximum profit is max {p | T(n,p) < C}.

P

Algorithms — II, Autumn 2020 Abhijit Das

Running Time

o First suppose that the weights and profits are single-precision integers.
o Let pygy = max(py,pa,...,Pn)s S0 P < nppay.

e Each entry T'(i,p) can be stored O(logn) bits/words.

e There are nP < nzpmax entries in 7.

e The total running time is therefore O(n2p.logn).

e Now allow p; to be arbitrarily large.
o If2I1 DPmax < 2!, each profit can be stored using / bits.
e The input size is O(nl).

e The running time is polynomial in »n but exponential in /.

Algorithms — II, Autumn 2020 Abhijit Das

An FPTAS for KNAPSACK

e Take a scaling-down factor ©.
e Consider the scaled-down profits p; = {%J .

e Run the dynamic-programming algorithm with the original weights and the
scaled-down profits.

e Since the weights are not changed, the capacity constraint is satisfied.

e Suppose that the algorithm returns the scaled-down total profit SOPT’. This is optimal
with respect to the scaled-down item profits p.

e We pack the same objects that achieve SOPT’ but consider the original profit values of
the objects. Call this total profit SOPT.

o Let OPT be the optimal total profit with the original p;.
e Let OPT’ be the scaled-down total profit of the objects that achieve OPT.

e We want| SOPT > (1 —£)OPT. |

Algorithms — II, Autumn 2020 Abhijit Das

Determination of o

e pi=|Y|=pi>l-1=0p,2pi—0=pi—0op,<o

e Sum over all (say, k) objects corresponding to OPT: ’ OPT — 6OPT’ < ko < no. ‘

o pi= %] <Z = op,<pi

e Sum over all objects corresponding to SOPT’: ‘ oSOPT’ < SOPT. ‘

e SOPT is optimal for the scaled-sown profits: ‘ SOPT’ > OPT'. ‘

o We have: | SOPT > 6SOPT' > GOPT’ > OPT — .|

e We want: | SOPT > (1 — ¢)OPT. |

e x OPT
< —.
n

o This is fulfilled by any o satisfying| o

€ X Pmax
n .

e Since py.x < OPT, we take| 0 =

Algorithms — II, Autumn 2020 Abhijit Das

Running Time

The dynamic-programming algorithm with scaled-down profits runs in
o(n?p, . logn) time.

P p
5] <2 =

n
e

3]
So the running time is O (2gn>'

This is polynomial in both n and 1/€.

So this is an FPTAS for the knapsack problem.

Algorithms — II, Autumn 2020 Abhijit Das

