Approximation Algorithms

Definitions and Examples

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

Optimization Problems

- *P* is an optimization problem.
- \mathcal{O}_I is the set of possible output instances on an input *I*.
- $f: \mathscr{O}_I \to \mathbb{R}$ is the objective function.
- Goal: To find an $O^* \in \mathcal{O}_I$ such that

[Minimization problem] $f(O^*) \leq f(O)$ [Maximization problem] $f(O^*) \geq f(O)$ for all $O \in \mathcal{O}_I$.

- Ties may be broken arbitrarily.
- $f(O^*)$ is denoted by OPT_I or OPT.
- We say *P* is an optimization problem in NP if:
 - It is easy to test the membership $O \in \mathcal{O}_I$.
 - It is easy to compute f(O) for every $O \in \mathcal{O}_I$.

Nondeterministic Polynomial-Time Optimization Algorithms

```
Nondeterministically generate candidates O.
Check whether O \in \mathcal{O}_I.
If yes, compute and return f(O).
```

- There is a mechanism to take the minimum or maximum of all the returned values.
- This is similar to logically OR-ing all the returned values of nondeterministic algorithms for decision problems.
- If $p = |\mathcal{O}_I|$, then a common CRCW PRAM with p^2 processors can compute the minimum/maximum in O(1) time.
- This algorithm must run in polynomial time. Therefore the candidate-generation stage should involve guessing only a polynomial number of bits.
- $|\mathcal{O}_I|$ should therefore be at most an exponential function of the input size.

Relation with Decision Problems

- Take an input *I* for *P*.
- Choose a bound *B*.
- The decision problem: Decide whether there exists an $O \in \mathcal{O}_I$ such that [Minimization problem] $f(O) \leq B$, [Maximization problem] $f(O) \geq B$.
- For appropriate choices of *B*, the decision problem is solvable in polynomial time if and only if the optimization problem is solvable in polynomial time.
- The decision problem is in NP if and only if the optimization problem is in NP.
- Example: Let G be an undirected graph.
 - MIN_VERTEX_COVER: Find a smallest vertex cover of *G*.
 - VERTEX_COVER: Given k, decide whether G has a vertex cover of size $\leq k$.

Approximation Algorithms

- Let *P* be an optimization problem in NP.
- A is called an *ρ*-approximation algorithm for P if for all inputs I, A produces an output O ∈ O_I such that

[Minimization problem] $f(O) \leq \rho \times OPT_I$,

[Maximization problem] $f(O) \ge \rho \times \text{OPT}_I$.

- ρ is called the **approximation ratio** or the **approximation factor**.
- ρ is called **tight** if $f(O) = \rho \times OPT_I$ for some instances.
- For minimization problems, $\rho > 1$. For maximization problems, $0 < \rho < 1$.
- Values of ρ close to 1 are preferable.
- We require A to run in time polynomial in the size n of the input. The running time of A may also depend on ρ .

Note: Some authors define $\rho = OPT/f(O)$ for maximization problems, so $\rho > 1$ for all optimization problems.

- G = (V, E) is an undirected graph.
- |V| = n and |E| = m.
- A vertex cover for *G* is a subset *U* ⊆ *V* such that every edge *e* ∈ *E* has at least one endpoint in *U*.
- MIN_VERTEX_COVER: Find a vertex cover U with |U| as small as possible.
- MIN_VERTEX_COVER is in NP:
 - It is easy to check whether U is a vertex cover.
 - It is easy to count the size of any vertex cover U.

A Logarithmic Approximation Algorithm for MIN_VERTEX_COVER

```
Initialize U = \emptyset.

while (E is not empty) {

Find a vertex u \in V of largest (remaining) degree.

Add u to U.

Delete from E all the (remaining) edges with u as one endpoint.

}

Return U.
```

- This is a greedy algorithm.
- The running time is polynomial in n + m.

- Let |U| = k.
- Vertices added to U are u_1, u_2, \ldots, u_k in that order.
- Let $t = |U^*|$.
- $\rho = k/t$.
- $G_0 = G$.
- For $1 \le i \le k$, $G_i = (V, E_i)$ is the graph after the edges incident upon u_1, u_2, \ldots, u_i are removed.
- $m_i = |E_i|$, so $m_0 = m$.

Passage from G_i to G_{i+1}

- u_1, u_2, \ldots, u_i contain t_i of the *t* vertices of U^* .
- The remaining $t t_i$ vertices of U^* constitute a vertex cover of G_i .
- There exists $v_{i+1} \in U^* \setminus \{u_1, u_2, \dots, u_i\}$ whose degree in G_i is $\ge m_i/(t-t_i)$.

•
$$\deg(u_{i+1}) \ge \deg(v_{i+1})$$
 in G_i .
• $m_{i+1} \le m_i \left(1 - \frac{1}{t - t_i}\right) \le m_i \left(1 - \frac{1}{t}\right)$.
• $m_i \le m \left(1 - \frac{1}{t}\right)^i$.

• For
$$i = t \ln m$$
, we have $m_i \leq m \left(1 - \frac{1}{t}\right)^{t \ln m} < m \left(e^{-1}\right)^{\ln m} = 1.$

• So $k \leq t \ln m$, that is, $\rho = k/t \leq \ln m = \Theta(\log n)$.

- Bipartite graph.
- |T| = t.

•
$$|B_i| = \lfloor t/i \rfloor$$
, so $|B| = \sum_{i=2}^t |B_i| = \sum_{i=2}^t \lfloor t/i \rfloor$.

- Each vertex in B_i is connected to *i* vertices in *T*.
- Vertices in B_i have mutually disjoint neighbor sets in T.

Tightness of ρ

•
$$|B| = \sum_{i=2}^{t} \left\lfloor \frac{t}{i} \right\rfloor \leq \sum_{i=2}^{t} \frac{t}{i} = t(H_t - 1) \leq t \ln t.$$

• $|B| = \sum_{i=2}^{t} \left\lfloor \frac{t}{i} \right\rfloor \geq \sum_{i=2}^{t} \frac{t - (i - 1)}{i} = (t + 1) \left(\sum_{i=2}^{t} \frac{1}{i} \right) - (t - 1) \geq (t - 1)(H_t - 2) \geq (t - 1)(\ln(t + 1) - 2).$

- $|U| = |B| = \Theta(t \log t)$.
- *T* is a vertex cover, so $|U^*| \leq |T| = \frac{1}{\Theta(\log t)}|U|$.

•
$$n = |V| = |B| + |T| = \Theta(t \log t) \Rightarrow \log t = \Theta(\log n) \Rightarrow \rho = \frac{|U|}{|U^*|} \ge \Theta(\log n).$$

2-Approximation Algorithm for MIN_VERTEX_COVER

- Based on matching.
- $D \subseteq E$ is called a matching if no two edges of D share an endpoint.
- Let D be any matching, and U any vertex cover.
- *U* must contain one endpoint of each edge in *D*.

```
• |D| \leqslant |U|.
```

```
Initialize U = \emptyset.

while (E is not empty) {

Pick any edge e = (u, v) from E.

Add u and v to U.

Remove u and v from V.

Remove from E all edges incident on u or v.

}

Return U.
```


Approximation Ratio

- Let *D* be the set of edges chosen in the loop.
- *D* is a matching in *G*.
- |U| = 2|D|.
- $|D| \leqslant |U^*|$.
- $|U| \leq 2|U^*|$.
- $\rho = \frac{|U|}{|U^*|} \leqslant 2.$
- Tightness:
 - Take $G = K_{n,n}$ (complete bipartite graph).
 - $|U^*| = n$.
 - |U| = 2n.

Approximation Algorithms

More Examples

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

Minimum Set Cover

•
$$X = \{x_1, x_2, x_3, \dots, x_m\}.$$

•
$$S_1, S_2, S_3, \ldots, S_n \subseteq X$$
 with $\bigcup_{i=1}^n S_i = X$.

• Take
$$1 \leq i_1 < i_2 < \cdots < i_k \leq n$$
.

•
$$S_{i_1}, S_{i_2}, \ldots, S_{i_k}$$
 is a **cover** of X if $\bigcup_{j=1}^k S_{i_j} = X$.

- To find a cover of *X* with *k* as small as possible.
- Vertex cover is a special case of set cover.

Logarithmic Approximation Algorithm for MIN_SET_COVER

```
Set U = \emptyset.
While (X \neq \emptyset) {
      Find a subset S of maximum (current) size.
      Add S to U.
      Set X = X \setminus S.
      For all remaining subsets S<sub>i</sub> (including S itself) {
            Set S_i = S_i \setminus S.
            If S_i is empty, remove S_i from the collection.
Return U.
```

- Similar to the greedy algorithm for MIN_VERTEX_COVER.
- Analysis is similar. $\rho = \Theta(\log n)$.

Traveling Salesperson Problem (TSP)

- G = (V, E) is a complete undirected graph.
- Cost function $c: E \to \mathbb{R}^+$.
- c(u,v) = c(v,u) for all $u, v \in V$.
- To find a Hamiltonian cycle Z in G for which the sum c(Z) of all the edge costs on Z is as small as possible.
- TSP is in NP:
 - It is easy to check whether a vertex sequence is a Hamiltonian cycle.
 - It is easy to compute the cost of a Hamiltonian cycle.
- EUCLIDEAN_TSP:
 - Vertices are points in the 2-dimensional plane.
 - c(u,v) = d(u,v) (Euclidean distance).

Compute a minimum spanning tree *T* of *G*. Choose an arbitrary vertex u_1 of *T*. Make a preorder traversal of *T* starting from u_1 . Let $W = (u_1, u_2, u_3, \dots, u_{2n-1})$ be the list of visited nodes. Remove duplicates from this list. Append u_1 at the end to obtain the Hamiltonian cycle *Z*. Return *Z*.

Example

Approximation ratio

- *Z* is a Hamiltonian cycle returned by the algorithm.
- Z^* is an optimal Hamiltonian cycle.
- Removal of an edge from Z^* gives a spanning tree of G.
- $c(T) \leqslant c(Z^*)$.
- c(W) = 2c(T).
- Duplicate removal:
 - Change u, v, w to u, w.
 - By the triangle inequality, $c(u, v) + c(v, w) \ge c(u, w)$.
 - The cost of W does not increase by duplicate removals.

•
$$c(Z) \leqslant c(W) = 2c(T) \leqslant 2c(Z^*).$$

•
$$\rho = \frac{c(Z)}{c(Z^*)} \leqslant 2$$

Inapproximability

Claim: For any constant $\rho > 1$, the existence of a polynomial-time ρ -approximation algorithm for (the general) TSP implies P = NP. *Proof*

- Let A be a (hypothetical) polynomial-time ρ -approximation algorithm for TSP.
- Let G = (V, E) be an instance of HAM-CYCLE with |V| = n.

• Consider the complete graph
$$G' = (V, E')$$
 with costs $c(e) = \begin{cases} \frac{1}{n} & \text{if } e \in E, \\ 2\rho & \text{otherwise.} \end{cases}$

- Run A on G'.
- If G contains a Hamiltonian cycle, the optimal TSP tour has cost 1, so A returns a tour of cost $\leq \rho$. This tour cannot contain an edge of cost 2ρ . Therefore A returns an optimal TSP tour.
- If G does not contain a Hamiltonian cycle, any TSP tour must use at least one edge of cost $2\rho > 2$.

Linear Programming (LP)

- Let $x_1, x_2, \ldots, x_n \ge 0$ be real-valued variables.
- The objective is to minimize/maximize a linear function

 $a_1x_1 + a_2x_2 + \cdots + a_nx_n$

subject to a set of linear constraints of the form

 $u_1x_1+u_2x_2+\cdots+u_nx_n \leq b,$

where \leq is =, \leq or \geq .

- Algorithms for solving LP:
 - Simplex method
 - Interior-point method

Example

The objective function is $f(x_1, x_2) = x_1 - 2x_2$ with $x_1, x_2 \ge 0$. Six additional constraints:

 $\begin{array}{rcl} C_1 & : & x_1 + x_2 \geqslant 3, \\ C_2 & : & 2x_1 - x_2 \leqslant 3, \\ C_3 & : & x_2 \leqslant 11, \\ C_4 & : & x_1 + 2x_2 \leqslant 32, \\ C_5 & : & 4x_1 - 3x_2 \leqslant 62, \\ C_6 & : & x_1 - 5x_2 \leqslant 3. \end{array}$

Example

Minimum Vertex Cover

- To find a minimum vertex cover U in G = (V, E).
- Introduce variables x_u for all $u \in V$.

$$x_u = \begin{cases} 1 & \text{if } u \text{ is included in the cover } U, \\ 0 & \text{otherwise.} \end{cases}$$

- Objective: Minimize $\sum_{u \in V} x_u$.
- For each $(u, v) \in E$, add the constraint

 $x_u + x_v \ge 1$.

• Note that x_u are integer/Boolean-valued variables.

Relaxation and Rounding

- Treat x_u as real-valued variable.
- Let $(\overline{x}_u)_{u \in V}$ be a solution of the relaxed LP.

• Take
$$x_u = \begin{cases} 0 & \text{if } 0 \leq \overline{x}_u < 0.5, \\ 1 & \text{if } 0.5 \leq \overline{x}_u \leq 1. \end{cases}$$

- Let $(u, v) \in E$. The constraint $\overline{x}_u + \overline{x}_v \ge 1$ implies that either $x_u = 1$ or $x_v = 1$ (or both).
- If $\overline{x}_u < 0.5$, we have $0 = x_u \leq 2\overline{x}_u$. If $\overline{x}_u \geq 0.5$, we have $1 = x_u \leq 2\overline{x}_u$.
- $\sum_{u\in V} x_u \leqslant 2 \sum_{u\in V} \overline{x}_u.$
- Variables x_u^* corresponding to a minimum vertex cover satisfy all the constraints.

•
$$\sum_{u \in V} \overline{x}_u \leqslant \sum_{u \in V} x_u^*.$$

•
$$\sum_{u \in V} x_u \leqslant 2 \sum_{u \in V} \overline{x}_u \leqslant 2 \sum_{u \in V} x_u^*, \text{ so } \rho \leqslant 2.$$

Approximation Algorithms

Polynomial-Time Approximation Schemes

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

Good Approximation Ratios

- Can we achieve $\rho = 1 \pm \varepsilon$ with ε as small as we like?
- In certain cases, we can.
- Running time becomes a function of n and $1/\varepsilon$.
- $O(n^{1/\varepsilon})$ is polynomial in *n* if ε is constant, but not so if ε is $1/\log n$ or 1/n.
- $O(n^3/\varepsilon^2)$ is polynomial in both *n* and $1/\varepsilon$.

Definition: Let *A* be a $(1 \pm \varepsilon)$ -approximation algorithm.

- *A* is called a **polynomial-time approximation scheme** (**PTAS**) if its running time is polynomial in *n*.
- A is called a **fully polynomial-time approximation scheme** (**FPTAS**) if its running time is polynomial in n and $1/\varepsilon$.

Knapsack Problem

- We have *n* objects O_1, O_2, \ldots, O_n .
- O_i has weight w_i and value (profit) p_i .
- Assume that w_i and p_i are positive integers.
- There is a knapsack of capacity C.
- Goal: To pack a subcollection $O_{i_1}, O_{i_2}, \ldots, O_{i_m}$ of the given objects in the knapsack such that:
 - 1. the profit $p_{i_1} + p_{i_2} + \cdots + p_{i_m}$ of the packed objects is maximized, and
 - **2.** $w_{i_1} + w_{i_2} + \dots + w_{i_m} \leq C$.
- We may assume that each $w_i \leq C$ (discard objects that do not fit individually in the knapsack).
- Obvious greedy strategies "most profitable first" and "maximum profit/weight first" lead to arbitrarily bad solutions.

A Dynamic-Programming Algorithm for KNAPSACK

- Let $P = p_1 + p_2 + \dots + p_n$. We populate an $n \times P$ table *T*.
- For $1 \le i \le n$ and $1 \le p \le P$, the entry T(i,p) stores the weight of a lightest subcollection of O_1, O_2, \ldots, O_i , whose profit is exactly p.
- If the profit *p* is not achievable by any subcollection, we store $T(i,p) = \infty$.

• Initialize the first row:
$$T(1,p) = \begin{cases} w_1 & \text{if } p = p_1, \\ \infty & \text{otherwise.} \end{cases}$$

• For $i > 1$, we have $T(i,p) = \begin{cases} T(i-1,p) & \text{if } p_i > p, \\ \min\left(w_i, T(i-1,p)\right) & \text{if } p_i = p, \\ \min\left(w_i + T(i-1,p-p_i), T(i-1,p)\right) & \text{if } p_i < p. \end{cases}$
• The maximum profit is $\max_{1 \le p \le P} \left\{ p \mid T(n,p) \le C \right\}.$

Running Time

- First suppose that the weights and profits are single-precision integers.
- Let $p_{max} = \max(p_1, p_2, \dots, p_n)$, so $P \leq np_{max}$.
- Each entry T(i,p) can be stored $O(\log n)$ bits/words.
- There are $nP \leq n^2 p_{max}$ entries in *T*.
- The total running time is therefore $O(n^2 p_{max} \log n)$.
- Now allow p_i to be arbitrarily large.
- If $2^{l-1} \leq p_{max} < 2^{l}$, each profit can be stored using *l* bits.
- The input size is O(nl).
- The running time is polynomial in *n* but exponential in *l*.

- Take a scaling-down factor σ .
- Consider the scaled-down profits $p'_i = \left\lfloor \frac{p_i}{\sigma} \right\rfloor$.
- Run the dynamic-programming algorithm with the original weights and the scaled-down profits.
- Since the weights are not changed, the capacity constraint is satisfied.
- Suppose that the algorithm returns the scaled-down total profit SOPT'. This is optimal with respect to the scaled-down item profits p'_i .
- We pack the same objects that achieve SOPT' but consider the original profit values of the objects. Call this total profit SOPT.
- Let OPT be the optimal total profit with the original p_i .
- Let OPT' be the scaled-down total profit of the objects that achieve OPT.

• We want SOPT
$$\geq (1 - \varepsilon)$$
 OPT.

Determination of σ

•
$$p'_i = \lfloor \frac{p_i}{\sigma} \rfloor \Rightarrow p'_i \geqslant \frac{p_i}{\sigma} - 1 \Rightarrow \sigma p'_i \geqslant p_i - \sigma \Rightarrow p_i - \sigma p'_i \leqslant \sigma.$$

- Sum over all (say, *k*) objects corresponding to OPT: $OPT \sigma OPT' \leq k\sigma \leq n\sigma$.
- $p'_i = \lfloor \frac{p_i}{\sigma} \rfloor \leqslant \frac{p_i}{\sigma} \Rightarrow \sigma p'_i \leqslant p_i.$
- Sum over all objects corresponding to SOPT': σ SOPT' \leq SOPT.
- SOPT' is optimal for the scaled-sown profits: | SOPT' \ge OPT'.
- We have: $\text{SOPT} \ge \sigma \text{SOPT}' \ge \sigma \text{OPT} n\sigma$.
- We want: SOPT $\geq (1 \varepsilon)$ OPT.
- This is fulfilled by any σ satisfying $\sigma \leq \frac{\varepsilon \times \text{OPT}}{n}$.

• Since
$$p_{max} \leq \text{OPT}$$
, we take $\sigma = \frac{\varepsilon \times p_{max}}{n}$.

• The dynamic-programming algorithm with scaled-down profits runs in $O(n^2 p'_{max} \log n)$ time.

•
$$p'_{max} = \left\lfloor \frac{p_{max}}{\sigma} \right\rfloor \leqslant \frac{p_{max}}{\sigma} = \frac{n}{\varepsilon}$$
.

- So the running time is $O\left(\frac{n^3 \log n}{\varepsilon}\right)$.
- This is polynomial in both *n* and $1/\varepsilon$.
- So this is an FPTAS for the knapsack problem.