Approximation Algorithms

Definitions and Examples

Abhijit Das
Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

- P is an optimization problem.
- \mathscr{O}_{I} is the set of possible output instances on an input I.
- $f: \mathscr{O}_{I} \rightarrow \mathbb{R}$ is the objective function.
- Goal: To find an $O^{*} \in \mathscr{O}_{I}$ such that
[Minimization problem] $f\left(O^{*}\right) \leqslant f(O)$
[Maximization problem] $f\left(O^{*}\right) \geqslant f(O)$
for all $O \in \mathscr{O}_{I}$.
- Ties may be broken arbitrarily.
- $f\left(O^{*}\right)$ is denoted by OPT_{I} or OPT.
- We say P is an optimization problem in NP if:
- It is easy to test the membership $O \in \mathscr{O}_{I}$.
- It is easy to compute $f(O)$ for every $O \in \mathscr{O}_{I}$.

```
Nondeterministically generate candidates O
Check whether }O\in\mp@subsup{\mathscr{O}}{I}{}\mathrm{ .
If yes, compute and return }f(O)\mathrm{ .
```

- There is a mechanism to take the minimum or maximum of all the returned values.
- This is similar to logically OR-ing all the returned values of nondeterministic algorithms for decision problems.
- If $p=\left|\mathscr{O}_{I}\right|$, then a common CRCW PRAM with p^{2} processors can compute the minimum/maximum in $\mathrm{O}(1)$ time.
- This algorithm must run in polynomial time. Therefore the candidate-generation stage should involve guessing only a polynomial number of bits.
- $\left|\mathscr{O}_{I}\right|$ should therefore be at most an exponential function of the input size.
- Take an input I for P.
- Choose a bound B.
- The decision problem: Decide whether there exists an $O \in \mathscr{O}_{I}$ such that [Minimization problem] $f(O) \leqslant B$, [Maximization problem] $f(O) \geqslant B$.
- For appropriate choices of B, the decision problem is solvable in polynomial time if and only if the optimization problem is solvable in polynomial time.
- The decision problem is in NP if and only if the optimization problem is in NP.
- Example: Let G be an undirected graph.
- MIN_VERTEX_COVER: Find a smallest vertex cover of G.
- VERTEX_COVER: Given k, decide whether G has a vertex cover of size $\leqslant k$.
- Let P be an optimization problem in NP.
- A is called an ρ-approximation algorithm for P if for all inputs I, A produces an output $O \in \mathscr{O}_{I}$ such that
[Minimization problem] $f(O) \leqslant \rho \times \mathrm{OPT}_{I}$,
[Maximization problem] $f(O) \geqslant \rho \times \mathrm{OPT}_{I}$.
- ρ is called the approximation ratio or the approximation factor.
- ρ is called tight if $f(O)=\rho \times \mathrm{OPT}_{I}$ for some instances.
- For minimization problems, $\rho>1$. For maximization problems, $0<\rho<1$.
- Values of ρ close to 1 are preferable.
- We require A to run in time polynomial in the size n of the input. The running time of A may also depend on ρ.

Note: Some authors define $\rho=\mathrm{OPT} / f(O)$ for maximization problems, so $\rho>1$ for all optimization problems.

- $G=(V, E)$ is an undirected graph.
- $|V|=n$ and $|E|=m$.
- A vertex cover for G is a subset $U \subseteq V$ such that every edge $e \in E$ has at least one endpoint in U.
- MIN_VERTEX_COVER: Find a vertex cover U with $|U|$ as small as possible.
- MIN_VERTEX_COVER is in NP:
- It is easy to check whether U is a vertex cover.
- It is easy to count the size of any vertex cover U.

```
Initialize \(U=\emptyset\).
while ( \(E\) is not empty) \{
    Find a vertex \(u \in V\) of largest (remaining) degree.
    Add \(u\) to \(U\).
    Delete from \(E\) all the (remaining) edges with \(u\) as one endpoint.
\}
Return \(U\).
```

- This is a greedy algorithm.
- The running time is polynomial in $n+m$.
- Let $|U|=k$.
- Vertices added to U are $u_{1}, u_{2}, \ldots, u_{k}$ in that order.
- Let $t=\left|U^{*}\right|$.
- $\rho=k / t$.
- $G_{0}=G$.
- For $1 \leqslant i \leqslant k, G_{i}=\left(V, E_{i}\right)$ is the graph after the edges incident upon $u_{1}, u_{2}, \ldots, u_{i}$ are removed.
- $m_{i}=\left|E_{i}\right|$, so $m_{0}=m$.

Passage from G_{i} to G_{i+1}

- $u_{1}, u_{2}, \ldots, u_{i}$ contain t_{i} of the t vertices of U^{*}.
- The remaining $t-t_{i}$ vertices of U^{*} constitute a vertex cover of G_{i}.
- There exists $v_{i+1} \in U^{*} \backslash\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}$ whose degree in G_{i} is $\geqslant m_{i} /\left(t-t_{i}\right)$.
- $\operatorname{deg}\left(u_{i+1}\right) \geqslant \operatorname{deg}\left(v_{i+1}\right)$ in G_{i}.
- $m_{i+1} \leqslant m_{i}\left(1-\frac{1}{t-t_{i}}\right) \leqslant m_{i}\left(1-\frac{1}{t}\right)$.
- $m_{i} \leqslant m\left(1-\frac{1}{t}\right)^{i}$.
- For $i=t \ln m$, we have $m_{i} \leqslant m\left(1-\frac{1}{t}\right)^{t \ln m}<m\left(e^{-1}\right)^{\ln m}=1$.
- So $k \leqslant t \ln m$, that is, $\rho=k / t \leqslant \ln m=\Theta(\log n)$.

- Bipartite graph.
- $|T|=t$.
- $\left|B_{i}\right|=\lfloor t / i\rfloor$, so $|B|=\sum_{i=2}^{t}\left|B_{i}\right|=\sum_{i=2}^{t}\lfloor t / i\rfloor$.
- Each vertex in B_{i} is connected to i vertices in T.
- Vertices in B_{i} have mutually disjoint neighbor sets in T.

- $|B|=\sum_{i=2}^{t}\left\lfloor\frac{t}{i}\right\rfloor \leqslant \sum_{i=2}^{t} \frac{t}{i}=t\left(H_{t}-1\right) \leqslant t \ln t$.
- $|B|=\sum_{i=2}^{t}\left\lfloor\frac{t}{i}\right\rfloor \geqslant \sum_{i=2}^{t} \frac{t-(i-1)}{i}=(t+1)\left(\sum_{i=2}^{t} \frac{1}{i}\right)-(t-1) \geqslant(t-1)\left(H_{t}-2\right) \geqslant$ $(t-1)(\ln (t+1)-2)$.
- $|U|=|B|=\Theta(t \log t)$.
- T is a vertex cover, so $\left|U^{*}\right| \leqslant|T|=\frac{1}{\Theta(\log t)}|U|$.
- $n=|V|=|B|+|T|=\Theta(t \log t) \Rightarrow \log t=\Theta(\log n) \Rightarrow \rho=\frac{|U|}{\left|U^{*}\right|} \geqslant \Theta(\log n)$.
- Based on matching.
- $D \subseteq E$ is called a matching if no two edges of D share an endpoint.
- Let D be any matching, and U any vertex cover.
- U must contain one endpoint of each edge in D.
- $|D| \leqslant|U|$.

```
Initialize U=\emptyset.
while ( }E\mathrm{ is not empty) {
    Pick any edge e=(u,v) from E.
    Add }u\mathrm{ and }v\mathrm{ to }U\mathrm{ .
    Remove }u\mathrm{ and v from V.
    Remove from E all edges incident on }u\mathrm{ or }v\mathrm{ .
}
Return U.
```


$U=\{a, b\}$

$U=\{a, b, c, d\}$

$U=\{a, b, c, d, f, g\}$

Approximation Ratio

- Let D be the set of edges chosen in the loop.
- D is a matching in G.
- $|U|=2|D|$.
- $|D| \leqslant\left|U^{*}\right|$.
- $|U| \leqslant 2\left|U^{*}\right|$.
- $\rho=\frac{|U|}{\left|U^{*}\right|} \leqslant 2$.
- Tightness:
- Take $G=K_{n, n}$ (complete bipartite graph).
- $\left|U^{*}\right|=n$.
- $|U|=2 n$.

Approximation Algorithms

More Examples

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

- $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\}$.
- $S_{1}, S_{2}, S_{3}, \ldots, S_{n} \subseteq X$ with $\bigcup_{i=1}^{n} S_{i}=X$.
- Take $1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n$.
- $S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{k}}$ is a cover of X if $\bigcup^{k} S_{i_{j}}=X$.

$$
j=1
$$

- To find a cover of X with k as small as possible.
- Vertex cover is a special case of set cover.

```
Set }U=\emptyset\mathrm{ .
While (X\not=\emptyset) {
    Find a subset S of maximum (current) size.
    Add S to }U\mathrm{ .
    Set }X=X\S\mathrm{ .
    For all remaining subsets Si (including S itself) {
        Set S
        If S}\mp@subsup{S}{i}{}\mathrm{ is empty, remove }\mp@subsup{S}{i}{}\mathrm{ from the collection.
    }
}
Return U.
```

- Similar to the greedy algorithm for MIN_VERTEX_COVER.
- Analysis is similar. $\rho=\Theta(\log n)$.
- $G=(V, E)$ is a complete undirected graph.
- Cost function $c: E \rightarrow \mathbb{R}^{+}$.
- $c(u, v)=c(v, u)$ for all $u, v \in V$.
- To find a Hamiltonian cycle Z in G for which the sum $c(Z)$ of all the edge costs on Z is as small as possible.
- TSP is in NP:
- It is easy to check whether a vertex sequence is a Hamiltonian cycle.
- It is easy to compute the cost of a Hamiltonian cycle.
- EUCLIDEAN_TSP:
- Vertices are points in the 2-dimensional plane.
- $c(u, v)=d(u, v)$ (Euclidean distance).

> Compute a minimum spanning tree T of G. Choose an arbitrary vertex u_{1} of T. Make a preorder traversal of T starting from u_{1}.
> Let $W=\left(u_{1}, u_{2}, u_{3}, \ldots, u_{2 n-1}\right)$ be the list of visited nodes. Remove duplicates from this list.
> Append u_{1} at the end to obtain the Hamiltonian cycle Z. Return Z.

(a) Location of the cities

(c) Preorder traversal of MST $f, e, c, e, d, e, g, e, f, a, b, a, f$

(b) Computation of an MST

(d) The TSP cycle f, e, c, d, g, a, b, f

- Z is a Hamiltonian cycle returned by the algorithm.
- Z^{*} is an optimal Hamiltonian cycle.
- Removal of an edge from Z^{*} gives a spanning tree of G.
- $c(T) \leqslant c\left(Z^{*}\right)$.
- $c(W)=2 c(T)$.
- Duplicate removal:
- Change u, v, w to u, w.
- By the triangle inequality, $c(u, v)+c(v, w) \geqslant c(u, w)$.
- The cost of W does not increase by duplicate removals.
- $c(Z) \leqslant c(W)=2 c(T) \leqslant 2 c\left(Z^{*}\right)$.
- $\rho=\frac{c(Z)}{c\left(Z^{*}\right)} \leqslant 2$.

Inapproximability

Claim: For any constant $\rho>1$, the existence of a polynomial-time ρ-approximation algorithm for (the general) TSP implies $\mathrm{P}=\mathrm{NP}$.
Proof

- Let A be a (hypothetical) polynomial-time ρ-approximation algorithm for TSP.
- Let $G=(V, E)$ be an instance of HAM-CYCLE with $|V|=n$.
- Consider the complete graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $\operatorname{costs} c(e)= \begin{cases}\frac{1}{n} & \text { if } e \in E, \\ 2 \rho & \text { otherwise. }\end{cases}$
- Run A on G^{\prime}.
- If G contains a Hamiltonian cycle, the optimal TSP tour has cost 1 , so A returns a tour of cost $\leqslant \rho$. This tour cannot contain an edge of cost 2ρ. Therefore A returns an optimal TSP tour.
- If G does not contain a Hamiltonian cycle, any TSP tour must use at least one edge of $\operatorname{cost} 2 \rho>2$.

Linear Programming (LP)

- Let $x_{1}, x_{2}, \ldots, x_{n} \geqslant 0$ be real-valued variables.
- The objective is to minimize/maximize a linear function

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

subject to a set of linear constraints of the form

$$
u_{1} x_{1}+u_{2} x_{2}+\cdots+u_{n} x_{n} \lessgtr b,
$$

where \leqslant is $=, \leqslant$ or \geqslant.

- Algorithms for solving LP:
- Simplex method
- Interior-point method

Example

The objective function is $f\left(x_{1}, x_{2}\right)=x_{1}-2 x_{2}$ with $x_{1}, x_{2} \geqslant 0$.
Six additional constraints:

$$
\begin{aligned}
& C_{1}: x_{1}+x_{2} \geqslant 3 \text {, } \\
& C_{2}: 2 x_{1}-x_{2} \leqslant 3 \text {, } \\
& C_{3}: x_{2} \leqslant 11 \text {, } \\
& C_{4}: x_{1}+2 x_{2} \leqslant 32 \text {, } \\
& C_{5}: 4 x_{1}-3 x_{2} \leqslant 62 \text {, } \\
& C_{6}: x_{1}-5 x_{2} \leqslant 3 \text {. }
\end{aligned}
$$

Example

- To find a minimum vertex cover U in $G=(V, E)$.
- Introduce variables x_{u} for all $u \in V$.

$$
x_{u}= \begin{cases}1 & \text { if } u \text { is included in the cover } U \\ 0 & \text { otherwise }\end{cases}
$$

- Objective: Minimize $\sum_{u \in V} x_{u}$.
- For each $(u, v) \in E$, add the constraint

$$
x_{u}+x_{v} \geqslant 1 .
$$

- Note that x_{u} are integer/Boolean-valued variables.
- Treat x_{u} as real-valued variable.
- Let $\left(\bar{x}_{u}\right)_{u \in V}$ be a solution of the relaxed LP.
- Take $x_{u}= \begin{cases}0 & \text { if } 0 \leqslant \bar{x}_{u}<0.5, \\ 1 & \text { if } 0.5 \leqslant \bar{x}_{u} \leqslant 1 .\end{cases}$
- Let $(u, v) \in E$. The constraint $\bar{x}_{u}+\bar{x}_{v} \geqslant 1$ implies that either $x_{u}=1$ or $x_{v}=1$ (or both).
- If $\bar{x}_{u}<0.5$, we have $0=x_{u} \leqslant 2 \bar{x}_{u}$. If $\bar{x}_{u} \geqslant 0.5$, we have $1=x_{u} \leqslant 2 \bar{x}_{u}$.
- $\sum_{u \in V} x_{u} \leqslant 2 \sum_{u \in V} \bar{x}_{u}$.
- Variables x_{u}^{*} corresponding to a minimum vertex cover satisfy all the constraints.
- $\sum_{u \in V} \bar{x}_{u} \leqslant \sum_{u \in V} x_{u}^{*}$.
- $\sum_{u \in V} x_{u} \leqslant 2 \sum_{u \in V} \bar{x}_{u} \leqslant 2 \sum_{u \in V} x_{u}^{*}$, so $\rho \leqslant 2$.

Approximation Algorithms

Polynomial-Time Approximation Schemes

Abhijit Das
Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

- Can we achieve $\rho=1 \pm \varepsilon$ with ε as small as we like?
- In certain cases, we can.
- Running time becomes a function of n and $1 / \varepsilon$.
- $\mathrm{O}\left(n^{1 / \varepsilon}\right)$ is polynomial in n if ε is constant, but not so if ε is $1 / \log n$ or $1 / n$.
- $\mathrm{O}\left(n^{3} / \varepsilon^{2}\right)$ is polynomial in both n and $1 / \varepsilon$.

Definition: Let A be a $(1 \pm \varepsilon)$-approximation algorithm.

- A is called a polynomial-time approximation scheme (PTAS) if its running time is polynomial in n.
- A is called a fully polynomial-time approximation scheme (FPTAS) if its running time is polynomial in n and $1 / \varepsilon$.
- We have n objects $O_{1}, O_{2}, \ldots, O_{n}$.
- O_{i} has weight w_{i} and value (profit) p_{i}.
- Assume that w_{i} and p_{i} are positive integers.
- There is a knapsack of capacity C.
- Goal: To pack a subcollection $O_{i_{1}}, O_{i_{2}}, \ldots, O_{i_{m}}$ of the given objects in the knapsack such that:

1. the profit $p_{i_{1}}+p_{i_{2}}+\cdots+p_{i_{m}}$ of the packed objects is maximized, and
2. $w_{i_{1}}+w_{i_{2}}+\cdots+w_{i_{m}} \leqslant C$.

- We may assume that each $w_{i} \leqslant C$ (discard objects that do not fit individually in the knapsack).
- Obvious greedy strategies "most profitable first" and "maximum profit/weight first" lead to arbitrarily bad solutions.

A Dynamic-Programming Algorithm for KNAPSACK

- Let $P=p_{1}+p_{2}+\cdots+p_{n}$. We populate an $n \times P$ table T.
- For $1 \leqslant i \leqslant n$ and $1 \leqslant p \leqslant P$, the entry $T(i, p)$ stores the weight of a lightest subcollection of $O_{1}, O_{2}, \ldots, O_{i}$, whose profit is exactly p.
- If the profit p is not achievable by any subcollection, we store $T(i, p)=\infty$.
- Initialize the first row: $T(1, p)= \begin{cases}w_{1} & \text { if } p=p_{1}, \\ \infty & \text { otherwise }\end{cases}$
- For $i>1$, we have $T(i, p)= \begin{cases}T(i-1, p) & \text { if } p_{i}>p, \\ \min \left(w_{i}, T(i-1, p)\right) & \text { if } p_{i}=p, \\ \min \left(w_{i}+T\left(i-1, p-p_{i}\right), T(i-1, p)\right) & \text { if } p_{i}<p .\end{cases}$
- The maximum profit is $\max _{1 \leqslant p \leqslant P}\{p \mid T(n, p) \leqslant C\}$.
- First suppose that the weights and profits are single-precision integers.
- Let $p_{\text {max }}=\max \left(p_{1}, p_{2}, \ldots, p_{n}\right)$, so $P \leqslant n p_{\text {max }}$.
- Each entry $T(i, p)$ can be stored $\mathrm{O}(\log n)$ bits/words.
- There are $n P \leqslant n^{2} p_{\text {max }}$ entries in T.
- The total running time is therefore $\mathrm{O}\left(n^{2} p_{\max } \log n\right)$.
- Now allow p_{i} to be arbitrarily large.
- If $2^{l-1} \leqslant p_{\max }<2^{l}$, each profit can be stored using l bits.
- The input size is $\mathrm{O}(n l)$.
- The running time is polynomial in n but exponential in l.
- Take a scaling-down factor σ.
- Consider the scaled-down profits $p_{i}^{\prime}=\left\lfloor\frac{p_{i}}{\sigma}\right\rfloor$.
- Run the dynamic-programming algorithm with the original weights and the scaled-down profits.
- Since the weights are not changed, the capacity constraint is satisfied.
- Suppose that the algorithm returns the scaled-down total profit SOPT^{\prime}. This is optimal with respect to the scaled-down item profits p_{i}^{\prime}.
- We pack the same objects that achieve SOPT^{\prime} but consider the original profit values of the objects. Call this total profit SOPT.
- Let OPT be the optimal total profit with the original p_{i}.
- Let OPT^{\prime} be the scaled-down total profit of the objects that achieve OPT.
- We want

```
SOPT \geqslant (1-\varepsilon)OPT.
```

- $p_{i}^{\prime}=\left\lfloor\frac{p_{i}}{\sigma}\right\rfloor \Rightarrow p_{i}^{\prime} \geqslant \frac{p_{i}}{\sigma}-1 \Rightarrow \sigma p_{i}^{\prime} \geqslant p_{i}-\sigma \Rightarrow p_{i}-\sigma p_{i}^{\prime} \leqslant \sigma$.
- Sum over all (say, k) objects corresponding to $\mathrm{OPT}: \mathrm{OPT}-\sigma \mathrm{OPT}^{\prime} \leqslant k \sigma \leqslant n \sigma$.
- $p_{i}^{\prime}=\left\lfloor\frac{p_{i}}{\sigma}\right\rfloor \leqslant \frac{p_{i}}{\sigma} \Rightarrow \sigma p_{i}^{\prime} \leqslant p_{i}$.
- Sum over all objects corresponding to $\mathrm{SOPT}^{\prime}: \sigma \mathrm{SOPT}^{\prime} \leqslant \mathrm{SOPT}$.
- SOPT^{\prime} is optimal for the scaled-sown profits: $\mathrm{SOPT}^{\prime} \geqslant \mathrm{OPT}^{\prime}$.
- We have: $\mathrm{SOPT} \geqslant \sigma \mathrm{SOPT}^{\prime} \geqslant \sigma \mathrm{OPT}^{\prime} \geqslant \mathrm{OPT}-n \sigma$.
- We want: $\mathrm{SOPT} \geqslant(1-\varepsilon)$ OPT.
- This is fulfilled by any σ satisfying $\sigma \leqslant \frac{\varepsilon \times \mathrm{OPT}}{n}$.
- Since $p_{\max } \leqslant$ OPT, we take $\sigma=\frac{\varepsilon \times p_{\max }}{n}$.
- The dynamic-programming algorithm with scaled-down profits runs in $\mathrm{O}\left(n^{2} p_{\text {max }}^{\prime} \log n\right)$ time.
- $p_{\max }^{\prime}=\left\lfloor\frac{p_{\max }}{\sigma}\right\rfloor \leqslant \frac{p_{\max }}{\sigma}=\frac{n}{\varepsilon}$.
- So the running time is $\mathrm{O}\left(\frac{n^{3} \log n}{\varepsilon}\right)$.
- This is polynomial in both n and $1 / \varepsilon$.
- So this is an FPTAS for the knapsack problem.

