**Approximation Algorithms** 

**Definitions and Examples** 

#### **Abhijit Das**

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

# **Optimization Problems**

- *P* is an optimization problem.
- $\mathcal{O}_I$  is the set of possible output instances on an input *I*.
- $f: \mathscr{O}_I \to \mathbb{R}$  is the objective function.
- Goal: To find an  $O^* \in \mathcal{O}_I$  such that

[Minimization problem]  $f(O^*) \leq f(O)$ [Maximization problem]  $f(O^*) \geq f(O)$ for all  $O \in \mathcal{O}_I$ .

- Ties may be broken arbitrarily.
- $f(O^*)$  is denoted by OPT<sub>I</sub> or OPT.
- We say *P* is an optimization problem in NP if:
  - It is easy to test the membership  $O \in \mathcal{O}_I$ .
  - It is easy to compute f(O) for every  $O \in \mathcal{O}_I$ .

# **Nondeterministic Polynomial-Time Optimization Algorithms**

```
Nondeterministically generate candidates O.
Check whether O \in \mathcal{O}_I.
If yes, compute and return f(O).
```

- There is a mechanism to take the minimum or maximum of all the returned values.
- This is similar to logically OR-ing all the returned values of nondeterministic algorithms for decision problems.
- If  $p = |\mathcal{O}_I|$ , then a common CRCW PRAM with  $p^2$  processors can compute the minimum/maximum in O(1) time.
- This algorithm must run in polynomial time. Therefore the candidate-generation stage should involve guessing only a polynomial number of bits.
- $|\mathcal{O}_I|$  should therefore be at most an exponential function of the input size.

## **Relation with Decision Problems**

- Take an input *I* for *P*.
- Choose a bound *B*.
- The decision problem: Decide whether there exists an  $O \in \mathcal{O}_I$  such that [Minimization problem]  $f(O) \leq B$ , [Maximization problem]  $f(O) \geq B$ .
- For appropriate choices of *B*, the decision problem is solvable in polynomial time if and only if the optimization problem is solvable in polynomial time.
- The decision problem is in NP if and only if the optimization problem is in NP.
- Example: Let G be an undirected graph.
  - MIN\_VERTEX\_COVER: Find a smallest vertex cover of *G*.
  - VERTEX\_COVER: Given k, decide whether G has a vertex cover of size  $\leq k$ .

# **Approximation** Algorithms

- Let *P* be an optimization problem in NP.
- A is called an *ρ*-approximation algorithm for P if for all inputs I, A produces an output O ∈ O<sub>I</sub> such that

[Minimization problem]  $f(O) \leq \rho \times OPT_I$ ,

[Maximization problem]  $f(O) \ge \rho \times \text{OPT}_I$ .

- $\rho$  is called the **approximation ratio** or the **approximation factor**.
- $\rho$  is called **tight** if  $f(O) = \rho \times OPT_I$  for some instances.
- For minimization problems,  $\rho > 1$ . For maximization problems,  $0 < \rho < 1$ .
- Values of  $\rho$  close to 1 are preferable.
- We require A to run in time polynomial in the size n of the input. The running time of A may also depend on  $\rho$ .

Note: Some authors define  $\rho = OPT/f(O)$  for maximization problems, so  $\rho > 1$  for all optimization problems.

- G = (V, E) is an undirected graph.
- |V| = n and |E| = m.
- A vertex cover for *G* is a subset *U* ⊆ *V* such that every edge *e* ∈ *E* has at least one endpoint in *U*.
- MIN\_VERTEX\_COVER: Find a vertex cover U with |U| as small as possible.
- MIN\_VERTEX\_COVER is in NP:
  - It is easy to check whether U is a vertex cover.
  - It is easy to count the size of any vertex cover U.

# A Logarithmic Approximation Algorithm for MIN\_VERTEX\_COVER

```
Initialize U = \emptyset.

while (E is not empty) {

Find a vertex u \in V of largest (remaining) degree.

Add u to U.

Delete from E all the (remaining) edges with u as one endpoint.

}

Return U.
```

- This is a greedy algorithm.
- The running time is polynomial in n + m.

- Let |U| = k.
- Vertices added to U are  $u_1, u_2, \ldots, u_k$  in that order.
- Let  $t = |U^*|$ .
- $\rho = k/t$ .
- $G_0 = G$ .
- For  $1 \le i \le k$ ,  $G_i = (V, E_i)$  is the graph after the edges incident upon  $u_1, u_2, \ldots, u_i$  are removed.
- $m_i = |E_i|$ , so  $m_0 = m$ .

## **Passage from** $G_i$ to $G_{i+1}$

- $u_1, u_2, \ldots, u_i$  contain  $t_i$  of the *t* vertices of  $U^*$ .
- The remaining  $t t_i$  vertices of  $U^*$  constitute a vertex cover of  $G_i$ .
- There exists  $v_{i+1} \in U^* \setminus \{u_1, u_2, \dots, u_i\}$  whose degree in  $G_i$  is  $\ge m_i/(t-t_i)$ .

• 
$$\deg(u_{i+1}) \ge \deg(v_{i+1})$$
 in  $G_i$ .  
•  $m_{i+1} \le m_i \left(1 - \frac{1}{t - t_i}\right) \le m_i \left(1 - \frac{1}{t}\right)$ .  
•  $m_i \le m \left(1 - \frac{1}{t}\right)^i$ .

• For 
$$i = t \ln m$$
, we have  $m_i \leq m \left(1 - \frac{1}{t}\right)^{t \ln m} < m \left(e^{-1}\right)^{\ln m} = 1.$ 

• So  $k \leq t \ln m$ , that is,  $\rho = k/t \leq \ln m = \Theta(\log n)$ .



- Bipartite graph.
- |T| = t.

• 
$$|B_i| = \lfloor t/i \rfloor$$
, so  $|B| = \sum_{i=2}^t |B_i| = \sum_{i=2}^t \lfloor t/i \rfloor$ .

- Each vertex in  $B_i$  is connected to *i* vertices in *T*.
- Vertices in  $B_i$  have mutually disjoint neighbor sets in T.



## **Tightness of** $\rho$

• 
$$|B| = \sum_{i=2}^{t} \left\lfloor \frac{t}{i} \right\rfloor \leq \sum_{i=2}^{t} \frac{t}{i} = t(H_t - 1) \leq t \ln t.$$
  
•  $|B| = \sum_{i=2}^{t} \left\lfloor \frac{t}{i} \right\rfloor \geq \sum_{i=2}^{t} \frac{t - (i - 1)}{i} = (t + 1) \left( \sum_{i=2}^{t} \frac{1}{i} \right) - (t - 1) \geq (t - 1)(H_t - 2) \geq (t - 1)(\ln(t + 1) - 2).$ 

- $|U| = |B| = \Theta(t \log t)$ .
- *T* is a vertex cover, so  $|U^*| \leq |T| = \frac{1}{\Theta(\log t)}|U|$ .

• 
$$n = |V| = |B| + |T| = \Theta(t \log t) \Rightarrow \log t = \Theta(\log n) \Rightarrow \rho = \frac{|U|}{|U^*|} \ge \Theta(\log n).$$

# 2-Approximation Algorithm for MIN\_VERTEX\_COVER

- Based on matching.
- $D \subseteq E$  is called a matching if no two edges of D share an endpoint.
- Let D be any matching, and U any vertex cover.
- *U* must contain one endpoint of each edge in *D*.

```
• |D| \leqslant |U|.
```

```
Initialize U = \emptyset.

while (E is not empty) {

Pick any edge e = (u, v) from E.

Add u and v to U.

Remove u and v from V.

Remove from E all edges incident on u or v.

}

Return U.
```



# **Approximation Ratio**

- Let *D* be the set of edges chosen in the loop.
- *D* is a matching in *G*.
- |U| = 2|D|.
- $|D| \leqslant |U^*|$ .
- $|U| \leq 2|U^*|$ .
- $\rho = \frac{|U|}{|U^*|} \leqslant 2.$
- Tightness:
  - Take  $G = K_{n,n}$  (complete bipartite graph).
  - $|U^*| = n$ .
  - |U| = 2n.

#### **Approximation Algorithms**

**More Examples** 

#### **Abhijit Das**

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

### Minimum Set Cover

• 
$$X = \{x_1, x_2, x_3, \dots, x_m\}.$$

• 
$$S_1, S_2, S_3, \ldots, S_n \subseteq X$$
 with  $\bigcup_{i=1}^n S_i = X$ .

• Take 
$$1 \leq i_1 < i_2 < \cdots < i_k \leq n$$
.

• 
$$S_{i_1}, S_{i_2}, \ldots, S_{i_k}$$
 is a **cover** of X if  $\bigcup_{j=1}^k S_{i_j} = X$ .

- To find a cover of *X* with *k* as small as possible.
- Vertex cover is a special case of set cover.

# Logarithmic Approximation Algorithm for MIN\_SET\_COVER

```
Set U = \emptyset.
While (X \neq \emptyset) {
      Find a subset S of maximum (current) size.
      Add S to U.
      Set X = X \setminus S.
      For all remaining subsets S<sub>i</sub> (including S itself) {
            Set S_i = S_i \setminus S.
            If S_i is empty, remove S_i from the collection.
Return U.
```

- Similar to the greedy algorithm for MIN\_VERTEX\_COVER.
- Analysis is similar.  $\rho = \Theta(\log n)$ .

# **Traveling Salesperson Problem (TSP)**

- G = (V, E) is a complete undirected graph.
- Cost function  $c: E \to \mathbb{R}^+$ .
- c(u,v) = c(v,u) for all  $u, v \in V$ .
- To find a Hamiltonian cycle Z in G for which the sum c(Z) of all the edge costs on Z is as small as possible.
- TSP is in NP:
  - It is easy to check whether a vertex sequence is a Hamiltonian cycle.
  - It is easy to compute the cost of a Hamiltonian cycle.
- EUCLIDEAN\_TSP:
  - Vertices are points in the 2-dimensional plane.
  - c(u,v) = d(u,v) (Euclidean distance).

Compute a minimum spanning tree *T* of *G*. Choose an arbitrary vertex  $u_1$  of *T*. Make a preorder traversal of *T* starting from  $u_1$ . Let  $W = (u_1, u_2, u_3, \dots, u_{2n-1})$  be the list of visited nodes. Remove duplicates from this list. Append  $u_1$  at the end to obtain the Hamiltonian cycle *Z*. Return *Z*.

### Example



# **Approximation ratio**

- *Z* is a Hamiltonian cycle returned by the algorithm.
- $Z^*$  is an optimal Hamiltonian cycle.
- Removal of an edge from  $Z^*$  gives a spanning tree of G.
- $c(T) \leqslant c(Z^*)$ .
- c(W) = 2c(T).
- Duplicate removal:
  - Change u, v, w to u, w.
  - By the triangle inequality,  $c(u, v) + c(v, w) \ge c(u, w)$ .
  - The cost of W does not increase by duplicate removals.

• 
$$c(Z) \leqslant c(W) = 2c(T) \leqslant 2c(Z^*).$$

• 
$$\rho = \frac{c(Z)}{c(Z^*)} \leqslant 2$$

## **Inapproximability**

**Claim:** For any constant  $\rho > 1$ , the existence of a polynomial-time  $\rho$ -approximation algorithm for (the general) TSP implies P = NP. *Proof* 

- Let A be a (hypothetical) polynomial-time  $\rho$ -approximation algorithm for TSP.
- Let G = (V, E) be an instance of HAM-CYCLE with |V| = n.

• Consider the complete graph 
$$G' = (V, E')$$
 with costs  $c(e) = \begin{cases} \frac{1}{n} & \text{if } e \in E, \\ 2\rho & \text{otherwise.} \end{cases}$ 

- Run A on G'.
- If G contains a Hamiltonian cycle, the optimal TSP tour has cost 1, so A returns a tour of cost  $\leq \rho$ . This tour cannot contain an edge of cost  $2\rho$ . Therefore A returns an optimal TSP tour.
- If G does not contain a Hamiltonian cycle, any TSP tour must use at least one edge of cost  $2\rho > 2$ .

## Linear Programming (LP)

- Let  $x_1, x_2, \ldots, x_n \ge 0$  be real-valued variables.
- The objective is to minimize/maximize a linear function

 $a_1x_1 + a_2x_2 + \cdots + a_nx_n$ 

subject to a set of linear constraints of the form

 $u_1x_1+u_2x_2+\cdots+u_nx_n \leq b,$ 

where  $\leq$  is =,  $\leq$  or  $\geq$ .

- Algorithms for solving LP:
  - Simplex method
  - Interior-point method

#### Example

The objective function is  $f(x_1, x_2) = x_1 - 2x_2$  with  $x_1, x_2 \ge 0$ . Six additional constraints:

 $\begin{array}{rcl} C_1 & : & x_1 + x_2 \geqslant 3, \\ C_2 & : & 2x_1 - x_2 \leqslant 3, \\ C_3 & : & x_2 \leqslant 11, \\ C_4 & : & x_1 + 2x_2 \leqslant 32, \\ C_5 & : & 4x_1 - 3x_2 \leqslant 62, \\ C_6 & : & x_1 - 5x_2 \leqslant 3. \end{array}$ 

## Example



## **Minimum Vertex Cover**

- To find a minimum vertex cover U in G = (V, E).
- Introduce variables  $x_u$  for all  $u \in V$ .

$$x_u = \begin{cases} 1 & \text{if } u \text{ is included in the cover } U, \\ 0 & \text{otherwise.} \end{cases}$$

- Objective: Minimize  $\sum_{u \in V} x_u$ .
- For each  $(u, v) \in E$ , add the constraint

 $x_u + x_v \ge 1$ .

• Note that  $x_u$  are integer/Boolean-valued variables.

# **Relaxation and Rounding**

- Treat  $x_u$  as real-valued variable.
- Let  $(\overline{x}_u)_{u \in V}$  be a solution of the relaxed LP.

• Take 
$$x_u = \begin{cases} 0 & \text{if } 0 \leq \overline{x}_u < 0.5, \\ 1 & \text{if } 0.5 \leq \overline{x}_u \leq 1. \end{cases}$$

- Let  $(u, v) \in E$ . The constraint  $\overline{x}_u + \overline{x}_v \ge 1$  implies that either  $x_u = 1$  or  $x_v = 1$  (or both).
- If  $\overline{x}_u < 0.5$ , we have  $0 = x_u \leq 2\overline{x}_u$ . If  $\overline{x}_u \geq 0.5$ , we have  $1 = x_u \leq 2\overline{x}_u$ .
- $\sum_{u\in V} x_u \leqslant 2 \sum_{u\in V} \overline{x}_u.$
- Variables  $x_u^*$  corresponding to a minimum vertex cover satisfy all the constraints.

• 
$$\sum_{u \in V} \overline{x}_u \leqslant \sum_{u \in V} x_u^*.$$
  
• 
$$\sum_{u \in V} x_u \leqslant 2 \sum_{u \in V} \overline{x}_u \leqslant 2 \sum_{u \in V} x_u^*, \text{ so } \rho \leqslant 2.$$

#### **Approximation Algorithms**

#### **Polynomial-Time Approximation Schemes**

#### Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 11, 2020

### **Good Approximation Ratios**

- Can we achieve  $\rho = 1 \pm \varepsilon$  with  $\varepsilon$  as small as we like?
- In certain cases, we can.
- Running time becomes a function of n and  $1/\varepsilon$ .
- $O(n^{1/\varepsilon})$  is polynomial in *n* if  $\varepsilon$  is constant, but not so if  $\varepsilon$  is  $1/\log n$  or 1/n.
- $O(n^3/\varepsilon^2)$  is polynomial in both *n* and  $1/\varepsilon$ .

**Definition:** Let *A* be a  $(1 \pm \varepsilon)$ -approximation algorithm.

- *A* is called a **polynomial-time approximation scheme** (**PTAS**) if its running time is polynomial in *n*.
- A is called a **fully polynomial-time approximation scheme** (**FPTAS**) if its running time is polynomial in n and  $1/\varepsilon$ .

## **Knapsack Problem**

- We have *n* objects  $O_1, O_2, \ldots, O_n$ .
- $O_i$  has weight  $w_i$  and value (profit)  $p_i$ .
- Assume that  $w_i$  and  $p_i$  are positive integers.
- There is a knapsack of capacity C.
- Goal: To pack a subcollection  $O_{i_1}, O_{i_2}, \ldots, O_{i_m}$  of the given objects in the knapsack such that:
  - 1. the profit  $p_{i_1} + p_{i_2} + \cdots + p_{i_m}$  of the packed objects is maximized, and
  - **2.**  $w_{i_1} + w_{i_2} + \dots + w_{i_m} \leq C$ .
- We may assume that each  $w_i \leq C$  (discard objects that do not fit individually in the knapsack).
- Obvious greedy strategies "most profitable first" and "maximum profit/weight first" lead to arbitrarily bad solutions.

## A Dynamic-Programming Algorithm for KNAPSACK

- Let  $P = p_1 + p_2 + \dots + p_n$ . We populate an  $n \times P$  table *T*.
- For  $1 \le i \le n$  and  $1 \le p \le P$ , the entry T(i,p) stores the weight of a lightest subcollection of  $O_1, O_2, \ldots, O_i$ , whose profit is exactly p.
- If the profit *p* is not achievable by any subcollection, we store  $T(i,p) = \infty$ .

• Initialize the first row: 
$$T(1,p) = \begin{cases} w_1 & \text{if } p = p_1, \\ \infty & \text{otherwise.} \end{cases}$$
  
• For  $i > 1$ , we have  $T(i,p) = \begin{cases} T(i-1,p) & \text{if } p_i > p, \\ \min\left(w_i, T(i-1,p)\right) & \text{if } p_i = p, \\ \min\left(w_i + T(i-1,p-p_i), T(i-1,p)\right) & \text{if } p_i < p. \end{cases}$   
• The maximum profit is  $\max_{1 \le p \le P} \left\{ p \mid T(n,p) \le C \right\}.$ 

# **Running Time**

- First suppose that the weights and profits are single-precision integers.
- Let  $p_{max} = \max(p_1, p_2, \dots, p_n)$ , so  $P \leq np_{max}$ .
- Each entry T(i,p) can be stored  $O(\log n)$  bits/words.
- There are  $nP \leq n^2 p_{max}$  entries in *T*.
- The total running time is therefore  $O(n^2 p_{max} \log n)$ .
- Now allow  $p_i$  to be arbitrarily large.
- If  $2^{l-1} \leq p_{max} < 2^{l}$ , each profit can be stored using *l* bits.
- The input size is O(nl).
- The running time is polynomial in *n* but exponential in *l*.

- Take a scaling-down factor  $\sigma$ .
- Consider the scaled-down profits  $p'_i = \left\lfloor \frac{p_i}{\sigma} \right\rfloor$ .
- Run the dynamic-programming algorithm with the original weights and the scaled-down profits.
- Since the weights are not changed, the capacity constraint is satisfied.
- Suppose that the algorithm returns the scaled-down total profit SOPT'. This is optimal with respect to the scaled-down item profits  $p'_i$ .
- We pack the same objects that achieve SOPT' but consider the original profit values of the objects. Call this total profit SOPT.
- Let OPT be the optimal total profit with the original  $p_i$ .
- Let OPT' be the scaled-down total profit of the objects that achieve OPT.

• We want SOPT 
$$\geq (1 - \varepsilon)$$
 OPT.

#### **Determination** of $\sigma$

• 
$$p'_i = \lfloor \frac{p_i}{\sigma} \rfloor \Rightarrow p'_i \geqslant \frac{p_i}{\sigma} - 1 \Rightarrow \sigma p'_i \geqslant p_i - \sigma \Rightarrow p_i - \sigma p'_i \leqslant \sigma.$$

- Sum over all (say, *k*) objects corresponding to OPT:  $OPT \sigma OPT' \leq k\sigma \leq n\sigma$ .
- $p'_i = \lfloor \frac{p_i}{\sigma} \rfloor \leqslant \frac{p_i}{\sigma} \Rightarrow \sigma p'_i \leqslant p_i.$
- Sum over all objects corresponding to SOPT':  $\sigma$ SOPT'  $\leq$  SOPT.
- SOPT' is optimal for the scaled-sown profits: | SOPT'  $\ge$  OPT'.
- We have:  $\text{SOPT} \ge \sigma \text{SOPT}' \ge \sigma \text{OPT} n\sigma$ .
- We want: SOPT  $\geq (1 \varepsilon)$ OPT.
- This is fulfilled by any  $\sigma$  satisfying  $\sigma \leq \frac{\varepsilon \times \text{OPT}}{n}$ .

• Since 
$$p_{max} \leq \text{OPT}$$
, we take  $\sigma = \frac{\varepsilon \times p_{max}}{n}$ .

• The dynamic-programming algorithm with scaled-down profits runs in  $O(n^2 p'_{max} \log n)$  time.

• 
$$p'_{max} = \left\lfloor \frac{p_{max}}{\sigma} \right\rfloor \leqslant \frac{p_{max}}{\sigma} = \frac{n}{\varepsilon}$$
.

- So the running time is  $O\left(\frac{n^3 \log n}{\varepsilon}\right)$ .
- This is polynomial in both *n* and  $1/\varepsilon$ .
- So this is an FPTAS for the knapsack problem.