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Matching 
 A matching in an undirected graph G = (V, E) is a 

subset of edges M ⊆ E, such that for all vertices v ∈ V, 
at most one edge of M is incident on v 

 Size of the matching M = |M| 
 Weight of the matching M (for weighted graphs) = 

sum of the weights of the edges in M 
 A maximum cardinality matching is a matching with 

maximum number of edges among all possible 
matchings 

 



 A maximum weighted matching is a matching with 
highest weight among all other matchings in the graph 

 Our problem: Given a weighted bipartite graph G = (V, 
E) with partitions X and Y, and positive weights on each 
edge, find a maximum weighted matching in G 

 Models assignment problems with cost in practice 
 Simple flow based techniques that we used for 

unweighted bipartite graphs no longer work for 
weighted graphs… 



A matching with weight 14 
(maximum cardinality 
matching but not maximum 
weighted) 
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A maximum weighted 
matching with weight 21 
(maximum weighted 
matching but not maximum 
cardinality) 
 



Perfect Matching 
 Given a matching M 
 The vertices belonging to the edges of a matching are 

saturated by the matching; the others are unsaturated (also 
called free vertices) 

 If a matching saturates every vertex of G, then it is a 
perfect matching 

 For a perfect matching to exist, number of vertices must be 
even 
 For bipartite graphs, the number of vertices in each partition 

must be the same 
 For any graph with n vertices, size of a perfect matching is 

n/2 



Augmenting Paths 
 Given a matching M, a path between two distinct 

vertices u and v is called an alternating path if the edges 
in the path alternate between in M and not in M 

 An alternating path P that begins and ends at unsaturated 
vertices is an augmenting path 
 Replacing M ∩ E(P) by (E(P) − M) produces a new 

matching M′ with one more edge than M (i.e., augments 
M) 
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{x1, x4, y4} are  unsaturated 
(x2, x3, x5, y1, y2, y3} are 
saturated 
P = <x1,y1,x2,y3,x5> is an 
alternating path but not augmenting 
 

P = <y2, x3, y3, x4> is an 
augmenting path 
M ∩ E(P) = {(x3,y3)} 
E(P) – M = {(x3, y2), (x4, y3)} 
M’ = {(x1,y1), (x3,y2), (x4, y3)} 
is a higher cardinality matching 
 



Key Result 

[Berge’s Theorem] A matching M in a graph G is a maximum 
matching in G if and only if  G has no augmenting path 
 
 This gives another way of finding maximum cardinality 

matchings in bipartite graphs without depending on flows 
 But does not help directly in finding a maximum weighted 

matching (can you show a counterexample?) 
 Instead, the algorithm we learn will use it in a related 

graph 

 



Hungarian Algorithm 
 Also called Kuhn-Munkres algorithm 
 Finds a maximum weighted perfect matching in a complete 

bipartite graph 
 |X| = |Y| 
 An edge (x, y) exists between each pair x ∈ X and y ∈ Y 

 So what if your input graph is not complete? 
 Just add dummy vertices ( if needed) to make the no. of 

vertices on both sides equal, and add edges that do not exist 
with weight 0 

 Find the maximum weighted matching in this new graph, then 
throw away any dummy edge included in the matching 

 Remaining edges will be the maximum weighted matching in 
your original input graph 



Equality Subgraph 
 Assign a label l(u) to every vertex u  
 Feasible labelling 
 l(x) + l(y) ≥ w(x,y) for any edge (x,y) 
 Given a feasible labelling l, Equality Subgraph Gl = (V, El) 

where 
 El = {(x,y) | x ∈ X, Y ∈ Y, l(x) + l(y) = w(x,y)} 

 Why is it important? 
 

[Kuhn-Munkres Theorem]: Let l be a feasible labeling of G. If M is 
a perfect matching in G l, then M is a maximum weighted matching 
in G. 

 
 



Hungarian Algorithm: Basic Idea 
 Start with any feasible labeling l and M = ∅ 

 While M is not a perfect matching repeat  
 1. Find an augmenting path for M in El and augment M 

    2. If no augmenting path exists, 

  Improve l to l′ such that at least one new  
        edge is added to the equality subgraph 
  Go to Step 1 
   
 



Initial Feasible Labeling 
 Start with this feasible labelling 
 l(x) = max{w(x,y)| y ∈ Y} for all x ∈ X 
 l(y) = 0 

 Guarantees that in the equality subgraph Gl 

 El has at least one edge from every vertex x ∈ X 

 



Some Definitions 
 Let l be a feasible labeling 
 Neighbor of u ∈ V  
 Nl(u) = {v : (u, v) ∈ El } 

 For any set S ⊆ V, neighborhood of S 
 Nl(S) = ∪u∈S Nl(u) 



 We will maintain two sets, S and T 
 At any time, S and T will keep information about the 

alternating/augmenting paths 
 S will have a subset of vertices in X 
 T will have a subset of vertices in Nl(S) 
 S and T together will keep track of a tree of alternating 

paths rooted at some free vertex in X (which will be in S) 

 



How to find the matching 
 Find a free vertex x ∈ X  
 Must exist unless you have reached the perfect matching 

 Create a tree rooted at X such that all paths in the tree 
from x are alternating 
 Vertices at even levels (0, 2, …) = vertices in S 
 These will be in X 

 Vertices at odd levels (1, 3, …)= vertices in T 
 These will be in Y 

 If we encounter a free vertex at odd level, we have found 
an augmenting path 
 Augment and continue 

 
 



How to improve the labeling 
 Let S ⊆ X and T = Nl(S) ≠ Y 
 Let 

 αl = min{l(x)+ l(y) − w(x, y) | x ∈ S, y not in T} 
 Note that αl  > 0 

 Then set 

 l′(v)  = l(v) − αl    if v ∈ S 
         = l(v) + αl    if v ∈ T 
         = l(v)            otherwise 

 



 The updated labeling l′ is a feasible labeling with the 
following properties: 
 If (x, y) ∈ El for x ∈ S, y ∈ T then (x, y) ∈ El′  
 Decrease in l(x) is same as increase in l(y) 

 If (x, y) ∈ El for x not in S, y not in T then (x, y) ∈ El′  
 Labels remain the same for them 

 There is some edge (x, y) ∈ El′ for x ∈ S, y not in T 
 At least for one edge ((the one with the minimum in αl 

computation), l(x) is decreased by the excess, l(y) is 
unchanged, so brings in the edge into the new equality graph 
 

 This shows that the new labelling increases the 
neighborhood of S 



The Algorithm 



Example 
 We do not show the dummy 0-weight edges added, though they 

are there, and you include them in all calculations of the steps of 
the algorithm 







Alternating Tree Generated 
 Tree generated while discovering the 

augmenting path in the last equality graph 
 From free vertex x2, first go to y2, then to 

x3, cannot grow this anymore 
 Come back to x2, explore y1, then x1, then 

y3, then x4, cannot grow this anymore 
 Come back to x1, go to y4, found an 

augmenting path, so stop 
 Note that the tree depends on order of visit 
 May have gone to y1 first from x2, then the 

augmenting path would have been found 
before y2 is explored (so y2 and x3 would 
not have been in the tree) 

 Similar possibility at x1 if we had visited y4 
first 
 



 The final maximum weighted matching found by the 
Hungarian algorithm for the complete bipartite graph is 
{(x1, y4), (x2, y1), (x3, y2), (x4, y3)} with weight 14 (= 0 
+ 4 + 6 + 4) 

 But (x1, y4) is a dummy edge (not in the original graph) 
 So drop it 
 Final maximum weighted matching M for the input graph 

is {(x2, y1), (x3, y2), (x4, y3)} with weight 14 
 x1 remains a free vertex as it cannot be matched 
 Dropping dummy edge does not affect weight as its weight 

is 0 



Time Complexity 
 Let |X| = |Y| = n 
 The outer while loop in Step 2 is executed once when the size of the 

matching increases by 1 
 So max. no of iterations = size of perfect matching = n 

 What is the time for one iteration of the outer while loop? 
 Step 2(a) and 2(b) take O(1) time  
 The while loop in step 2(c) can run O(n) times 
 It can run when Nl(S) ≠ T until Nl(S) = T 
 After coming out of the loop when Nl(S) = T, it can then run again from step 

2(e) after the relabeling is done which makes Nl(S) ≠ T again 
 Irrespective of where it runs from, every time the loop runs, it will either 

augment M and break to go to while loop in Step 2, or add one new vertex 
to S and T 

 Since only O(n) vertices can be added before an augmenting path is found, 
max. no. of iterations is O(n) 

 Time per iteration  of the while loop in 2(c) = O(n) 
 If augmenting M, any path has maximum length O(n) 
 If not, picking y and finding x takes O(n) time 

 Total time for the while loop in Step 2(c) = O(n2) 
 
 



At   Step 2(d) 
 Computing αl takes O(n2) time (in naïve approach) 
 Updating the labels take O(n) time 
 In the worst case, relabeling can be done O(n) times 
 Each time adding exactly one new node to Nl(S) 

 Total O(n3) time   

 So total time for one iteration of the outer while loop = 
O(1) + O(n2) + O(n3) = O(n3) 

 So total time for the algorithm = no. of iterations of Step 2 
× time for one iteration = O(n)× O(n3) = O(n4) = 
O(|V|4) 

 However, this uses a naïve approach that computes αl  
from scratch every time, not efficient 
 
 
 



 Time for step 2(d) can be reduced to O(n2) instead of O(n3) per iteration of 
the outer while loop 
 At any relabeling step, note that  you have to consider (x,y) pairs such that x ∈ S, 

y not in T  
 ∀y not in T keep track of 
  slack(y) = minx∈S{ℓ(x)+ℓ(y) − w(x, y)} 
 Initialize slack at beginning of outer while loop (Step 2) iteration in O(n) time as 

only one node in S  
 When a node goes from X-S to S (inside inner while loop in step 2(c)), update 

slacks 
 O(n) time as only one vertex moved in S each time, so does not change the time 

for one iteration of the inner while loop we computed 
 So total O(n2) time over all iterations of the while loop in step 2(c), same as before 

 During relabeling, compute αl  as miny∈T slack(y) in O(n) time 
 So total O(n2) time as relabeling can be done at most O(n) times as we have seen 

 After computing αl update slacks:  ∀y not in  T, slack(y) = slack(y) − αl 
 O(n) time for each update, total O(n2) time over all relabeling 

 
 Final Time complexity of Hungarian algorithm 
 O(n)× O(n2) = O(n3) = O(|V|3) 

 



 Note: 
 There is an equivalent matrix based description of 

Hungarian algorithm that manipulates matrices instead of 
bipartite graphs 

 The algorithm is the same, just the representation is 
different 

 We will not do it in this class, but useful to know from a 
practical implementation point of view 
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