
Weighted Bipartite
Matching

CS31005: Algorithms-II
Autumn 2020
IIT Kharagpur

Matching
 A matching in an undirected graph G = (V, E) is a

subset of edges M ⊆ E, such that for all vertices v ∈ V,
at most one edge of M is incident on v

 Size of the matching M = |M|
 Weight of the matching M (for weighted graphs) =

sum of the weights of the edges in M
 A maximum cardinality matching is a matching with

maximum number of edges among all possible
matchings

 A maximum weighted matching is a matching with
highest weight among all other matchings in the graph

 Our problem: Given a weighted bipartite graph G = (V,
E) with partitions X and Y, and positive weights on each
edge, find a maximum weighted matching in G

 Models assignment problems with cost in practice
 Simple flow based techniques that we used for

unweighted bipartite graphs no longer work for
weighted graphs…

A matching with weight 14
(maximum cardinality
matching but not maximum
weighted)

9

4

5 5

12
1

3
5

A maximum weighted
matching with weight 21
(maximum weighted
matching but not maximum
cardinality)

Perfect Matching
 Given a matching M
 The vertices belonging to the edges of a matching are

saturated by the matching; the others are unsaturated (also
called free vertices)

 If a matching saturates every vertex of G, then it is a
perfect matching

 For a perfect matching to exist, number of vertices must be
even
 For bipartite graphs, the number of vertices in each partition

must be the same
 For any graph with n vertices, size of a perfect matching is

n/2

Augmenting Paths
 Given a matching M, a path between two distinct

vertices u and v is called an alternating path if the edges
in the path alternate between in M and not in M

 An alternating path P that begins and ends at unsaturated
vertices is an augmenting path
 Replacing M ∩ E(P) by (E(P) − M) produces a new

matching M′ with one more edge than M (i.e., augments
M)

9

5

5 5

8
1

3
5

x1

x4

x5

x3

x2

y1

y4

y3

y2

x1

x2

x3

x4

x5

y1

y2

y3

y4

{x1, x4, y4} are unsaturated
(x2, x3, x5, y1, y2, y3} are
saturated
P = <x1,y1,x2,y3,x5> is an
alternating path but not augmenting

P = <y2, x3, y3, x4> is an
augmenting path
M ∩ E(P) = {(x3,y3)}
E(P) – M = {(x3, y2), (x4, y3)}
M’ = {(x1,y1), (x3,y2), (x4, y3)}
is a higher cardinality matching

Key Result

[Berge’s Theorem] A matching M in a graph G is a maximum
matching in G if and only if G has no augmenting path

 This gives another way of finding maximum cardinality

matchings in bipartite graphs without depending on flows
 But does not help directly in finding a maximum weighted

matching (can you show a counterexample?)
 Instead, the algorithm we learn will use it in a related

graph

Hungarian Algorithm
 Also called Kuhn-Munkres algorithm
 Finds a maximum weighted perfect matching in a complete

bipartite graph
 |X| = |Y|
 An edge (x, y) exists between each pair x ∈ X and y ∈ Y

 So what if your input graph is not complete?
 Just add dummy vertices (if needed) to make the no. of

vertices on both sides equal, and add edges that do not exist
with weight 0

 Find the maximum weighted matching in this new graph, then
throw away any dummy edge included in the matching

 Remaining edges will be the maximum weighted matching in
your original input graph

Equality Subgraph
 Assign a label l(u) to every vertex u
 Feasible labelling
 l(x) + l(y) ≥ w(x,y) for any edge (x,y)
 Given a feasible labelling l, Equality Subgraph Gl = (V, El)

where
 El = {(x,y) | x ∈ X, Y ∈ Y, l(x) + l(y) = w(x,y)}

 Why is it important?

[Kuhn-Munkres Theorem]: Let l be a feasible labeling of G. If M is
a perfect matching in G l, then M is a maximum weighted matching
in G.

Hungarian Algorithm: Basic Idea
 Start with any feasible labeling l and M = ∅

 While M is not a perfect matching repeat
 1. Find an augmenting path for M in El and augment M

 2. If no augmenting path exists,

 Improve l to l′ such that at least one new
 edge is added to the equality subgraph
 Go to Step 1

Initial Feasible Labeling
 Start with this feasible labelling
 l(x) = max{w(x,y)| y ∈ Y} for all x ∈ X
 l(y) = 0

 Guarantees that in the equality subgraph Gl

 El has at least one edge from every vertex x ∈ X

Some Definitions
 Let l be a feasible labeling
 Neighbor of u ∈ V
 Nl(u) = {v : (u, v) ∈ El }

 For any set S ⊆ V, neighborhood of S
 Nl(S) = ∪u∈S Nl(u)

 We will maintain two sets, S and T
 At any time, S and T will keep information about the

alternating/augmenting paths
 S will have a subset of vertices in X
 T will have a subset of vertices in Nl(S)
 S and T together will keep track of a tree of alternating

paths rooted at some free vertex in X (which will be in S)

How to find the matching
 Find a free vertex x ∈ X
 Must exist unless you have reached the perfect matching

 Create a tree rooted at X such that all paths in the tree
from x are alternating
 Vertices at even levels (0, 2, …) = vertices in S
 These will be in X

 Vertices at odd levels (1, 3, …)= vertices in T
 These will be in Y

 If we encounter a free vertex at odd level, we have found
an augmenting path
 Augment and continue

How to improve the labeling
 Let S ⊆ X and T = Nl(S) ≠ Y
 Let

 αl = min{l(x)+ l(y) − w(x, y) | x ∈ S, y not in T}
 Note that αl > 0

 Then set

 l′(v) = l(v) − αl if v ∈ S
 = l(v) + αl if v ∈ T
 = l(v) otherwise

 The updated labeling l′ is a feasible labeling with the
following properties:
 If (x, y) ∈ El for x ∈ S, y ∈ T then (x, y) ∈ El′
 Decrease in l(x) is same as increase in l(y)

 If (x, y) ∈ El for x not in S, y not in T then (x, y) ∈ El′
 Labels remain the same for them

 There is some edge (x, y) ∈ El′ for x ∈ S, y not in T
 At least for one edge ((the one with the minimum in αl

computation), l(x) is decreased by the excess, l(y) is
unchanged, so brings in the edge into the new equality graph

 This shows that the new labelling increases the
neighborhood of S

The Algorithm

Example
 We do not show the dummy 0-weight edges added, though they

are there, and you include them in all calculations of the steps of
the algorithm

Alternating Tree Generated
 Tree generated while discovering the

augmenting path in the last equality graph
 From free vertex x2, first go to y2, then to

x3, cannot grow this anymore
 Come back to x2, explore y1, then x1, then

y3, then x4, cannot grow this anymore
 Come back to x1, go to y4, found an

augmenting path, so stop
 Note that the tree depends on order of visit
 May have gone to y1 first from x2, then the

augmenting path would have been found
before y2 is explored (so y2 and x3 would
not have been in the tree)

 Similar possibility at x1 if we had visited y4
first

 The final maximum weighted matching found by the
Hungarian algorithm for the complete bipartite graph is
{(x1, y4), (x2, y1), (x3, y2), (x4, y3)} with weight 14 (= 0
+ 4 + 6 + 4)

 But (x1, y4) is a dummy edge (not in the original graph)
 So drop it
 Final maximum weighted matching M for the input graph

is {(x2, y1), (x3, y2), (x4, y3)} with weight 14
 x1 remains a free vertex as it cannot be matched
 Dropping dummy edge does not affect weight as its weight

is 0

Time Complexity
 Let |X| = |Y| = n
 The outer while loop in Step 2 is executed once when the size of the

matching increases by 1
 So max. no of iterations = size of perfect matching = n

 What is the time for one iteration of the outer while loop?
 Step 2(a) and 2(b) take O(1) time
 The while loop in step 2(c) can run O(n) times
 It can run when Nl(S) ≠ T until Nl(S) = T
 After coming out of the loop when Nl(S) = T, it can then run again from step

2(e) after the relabeling is done which makes Nl(S) ≠ T again
 Irrespective of where it runs from, every time the loop runs, it will either

augment M and break to go to while loop in Step 2, or add one new vertex
to S and T

 Since only O(n) vertices can be added before an augmenting path is found,
max. no. of iterations is O(n)

 Time per iteration of the while loop in 2(c) = O(n)
 If augmenting M, any path has maximum length O(n)
 If not, picking y and finding x takes O(n) time

 Total time for the while loop in Step 2(c) = O(n2)

At Step 2(d)
 Computing αl takes O(n2) time (in naïve approach)
 Updating the labels take O(n) time
 In the worst case, relabeling can be done O(n) times
 Each time adding exactly one new node to Nl(S)

 Total O(n3) time

 So total time for one iteration of the outer while loop =
O(1) + O(n2) + O(n3) = O(n3)

 So total time for the algorithm = no. of iterations of Step 2
× time for one iteration = O(n)× O(n3) = O(n4) =
O(|V|4)

 However, this uses a naïve approach that computes αl
from scratch every time, not efficient

 Time for step 2(d) can be reduced to O(n2) instead of O(n3) per iteration of
the outer while loop
 At any relabeling step, note that you have to consider (x,y) pairs such that x ∈ S,

y not in T
 ∀y not in T keep track of
 slack(y) = minx∈S{ℓ(x)+ℓ(y) − w(x, y)}
 Initialize slack at beginning of outer while loop (Step 2) iteration in O(n) time as

only one node in S
 When a node goes from X-S to S (inside inner while loop in step 2(c)), update

slacks
 O(n) time as only one vertex moved in S each time, so does not change the time

for one iteration of the inner while loop we computed
 So total O(n2) time over all iterations of the while loop in step 2(c), same as before

 During relabeling, compute αl as miny∈T slack(y) in O(n) time
 So total O(n2) time as relabeling can be done at most O(n) times as we have seen

 After computing αl update slacks: ∀y not in T, slack(y) = slack(y) − αl
 O(n) time for each update, total O(n2) time over all relabeling

 Final Time complexity of Hungarian algorithm
 O(n)× O(n2) = O(n3) = O(|V|3)

 Note:
 There is an equivalent matrix based description of

Hungarian algorithm that manipulates matrices instead of
bipartite graphs

 The algorithm is the same, just the representation is
different

 We will not do it in this class, but useful to know from a
practical implementation point of view

	Weighted Bipartite Matching
	Matching
	Slide Number 3
	Slide Number 4
	Perfect Matching
	Augmenting Paths
	Slide Number 7
	Key Result
	Hungarian Algorithm
	Equality Subgraph
	Hungarian Algorithm: Basic Idea
	Initial Feasible Labeling
	Some Definitions
	Slide Number 14
	How to find the matching
	How to improve the labeling
	Slide Number 17
	The Algorithm
	Example
	Slide Number 20
	Slide Number 21
	Alternating Tree Generated
	Slide Number 23
	Time Complexity
	At
	Slide Number 26
	Slide Number 27

