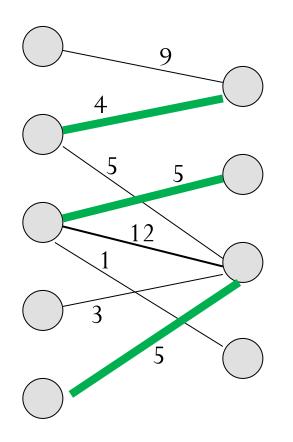
Weighted Bipartite Matching

CS31005: Algorithms-II Autumn 2020 IIT Kharagpur

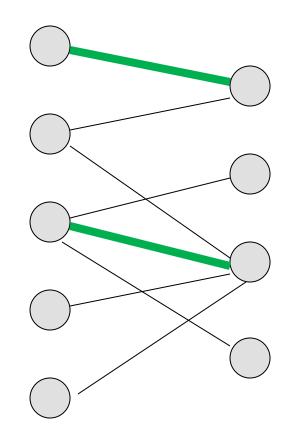
Matching

- A matching in an undirected graph G = (V, E) is a subset of edges $M \subseteq E$, such that for all vertices $v \in V$, at most one edge of M is incident on v
- Size of the matching M = |M|
- Weight of the matching M (for weighted graphs) = sum of the weights of the edges in M
- A maximum cardinality matching is a matching with maximum number of edges among all possible matchings

- A maximum weighted matching is a matching with highest weight among all other matchings in the graph
- Our problem: Given a weighted bipartite graph G = (V, E) with partitions X and Y, and positive weights on each edge, find a maximum weighted matching in G
- Models assignment problems with cost in practice
- Simple flow based techniques that we used for unweighted bipartite graphs no longer work for weighted graphs...



A matching with weight 14 (maximum cardinality matching but not maximum weighted)



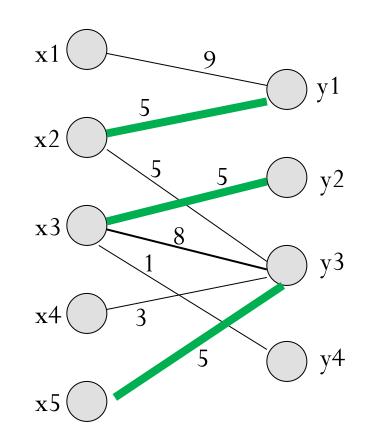
A maximum weighted matching with weight 21 (maximum weighted matching but not maximum cardinality)

Perfect Matching

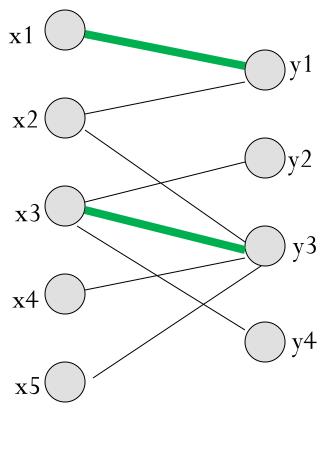
- Given a matching M
 - The vertices belonging to the edges of a matching are saturated by the matching; the others are unsaturated (also called free vertices)
- If a matching saturates every vertex of G, then it is a perfect matching
- For a perfect matching to exist, number of vertices must be even
 - For bipartite graphs, the number of vertices in each partition must be the same
 - For any graph with n vertices, size of a perfect matching is n/2

Augmenting Paths

- Given a matching M, a path between two distinct vertices u and v is called an alternating path if the edges in the path alternate between in M and not in M
- An alternating path P that begins and ends at unsaturated vertices is an augmenting path
 - Replacing M ∩ E(P) by (E(P) − M) produces a new matching M' with one more edge than M (i.e., augments M)



 ${x1, x4, y4}$ are unsaturated (x2, x3, x5, y1, y2, y3} are saturated P = ${x1,y1,x2,y3,x5}$ is an alternating path but not augmenting



 $P = \langle y2, x3, y3, x4 \rangle$ is an augmenting path $M \cap E(P) = \{(x3, y3)\}\$ $E(P) - M = \{(x3, y2), (x4, y3)\}\$ $M' = \{(x1, y1), (x3, y2), (x4, y3)\}\$ is a higher cardinality matching

Key Result

[Berge's Theorem] A matching M in a graph G is a maximum matching in G if and only if G has no augmenting path

- This gives another way of finding maximum cardinality matchings in bipartite graphs without depending on flows
- But does not help directly in finding a maximum weighted matching (can you show a counterexample?)
- Instead, the algorithm we learn will use it in a related graph

Hungarian Algorithm

- Also called Kuhn-Munkres algorithm
 - Finds a maximum weighted perfect matching in a complete bipartite graph
 - $\bullet |X| = |Y|$
 - An edge (x, y) exists between each pair $x \in X$ and $y \in Y$
- So what if your input graph is not complete?
 - Just add dummy vertices (if needed) to make the no. of vertices on both sides equal, and add edges that do not exist with weight 0
 - Find the maximum weighted matching in this new graph, then throw away any dummy edge included in the matching
 - Remaining edges will be the maximum weighted matching in your original input graph

Equality Subgraph

- Assign a label $\ell(u)$ to every vertex u
- Feasible labelling

 $\boldsymbol{\ell}(\mathbf{x}) + \boldsymbol{\ell}(\mathbf{y}) \ge \mathbf{w}(\mathbf{x},\mathbf{y})$ for any edge (\mathbf{x},\mathbf{y})

• Given a feasible labelling ℓ , Equality Subgraph $G_{\ell} = (V, E_{\ell})$ where

•
$$E_{\boldsymbol{\ell}} = \{(x,y) \mid x \in X, Y \in Y, \boldsymbol{\ell}(x) + \boldsymbol{\ell}(y) = w(x,y)\}$$

• Why is it important?

[Kuhn-Munkres Theorem]: Let ℓ be a feasible labeling of G. If M is a perfect matching in G_{ℓ} , then M is a maximum weighted matching in G.

Hungarian Algorithm: Basic Idea

- Start with any feasible labeling $\boldsymbol{\ell}$ and $M = \boldsymbol{\emptyset}$
- While M is not a perfect matching repeat

 Find an augmenting path for M in E_l and augment M
 If no augmenting path exists,
 Improve l to l' such that at least one new edge is added to the equality subgraph
 Go to Step 1

Initial Feasible Labeling

- Start with this feasible labelling
 - $\boldsymbol{\ell}(\mathbf{x}) = \max\{\mathbf{w}(\mathbf{x},\mathbf{y}) \mid \mathbf{y} \in \mathbf{Y}\}$ for all $\mathbf{x} \in \mathbf{X}$
 - $\boldsymbol{\ell}(\mathbf{y}) = 0$
- Guarantees that in the equality subgraph G_{ℓ}
 - E_{ℓ} has at least one edge from every vertex $x \in X$

Some Definitions

- Let $\boldsymbol{\ell}$ be a feasible labeling
- Neighbor of $u \in V$
 - $N_{\ell}(u) = \{v : (u, v) \in E_{\ell}\}$
- For any set $S \subseteq V$, neighborhood of S

•
$$N_{\ell}(S) = \bigcup_{u \in S} N_{\ell}(u)$$

- We will maintain two sets, S and T
- At any time, S and T will keep information about the alternating/augmenting paths
 - S will have a subset of vertices in X
 - T will have a subset of vertices in $N_{\ell}(S)$
 - S and T together will keep track of a tree of alternating paths rooted at some free vertex in X (which will be in S)

How to find the matching

- Find a free vertex $x \in X$
 - Must exist unless you have reached the perfect matching
- Create a tree rooted at X such that all paths in the tree from x are alternating
 - Vertices at even levels (0, 2, ...) = vertices in S
 - These will be in X
 - Vertices at odd levels (1, 3, ...) = vertices in T
 - These will be in Y
 - If we encounter a free vertex at odd level, we have found an augmenting path
 - Augment and continue

How to improve the labeling

• Let
$$S \subseteq X$$
 and $T = N_{\ell}(S) \neq Y$

• Let

$$\alpha_{\ell} = \min \{ \ell(\mathbf{x}) + \ell(\mathbf{y}) - \mathbf{w}(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in S, \mathbf{y} \text{ not in } T \}$$

• Note that $\alpha_{\ell} > 0$

• Then set

$$\ell'(v) = \ell(v) - \alpha_{\ell} \quad \text{if } v \in S$$
$$= \ell(v) + \alpha_{\ell} \quad \text{if } v \in T$$
$$= \ell(v) \quad \text{otherwise}$$

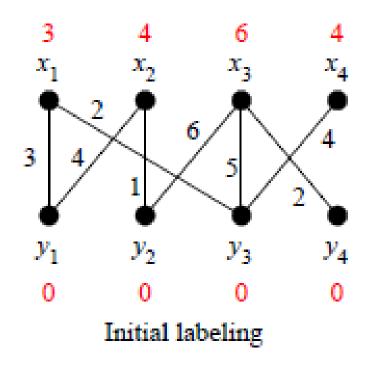
- The updated labeling ℓ' is a feasible labeling with the following properties:
 - If $(x, y) \in E_{\ell}$ for $x \in S, y \in T$ then $(x, y) \in E_{\ell'}$
 - Decrease in $\boldsymbol{\ell}(x)$ is same as increase in $\boldsymbol{\ell}(y)$
 - If $(x, y) \in E_{\ell}$ for x not in S, y not in T then $(x, y) \in E_{\ell'}$
 - Labels remain the same for them
 - There is some edge $(x, y) \in E_{\ell'}$ for $x \in S$, y not in T
 - At least for one edge ((the one with the minimum in α_{ℓ} computation), $\ell(x)$ is decreased by the excess, $\ell(y)$ is unchanged, so brings in the edge into the new equality graph
- This shows that the new labelling increases the neighborhood of S

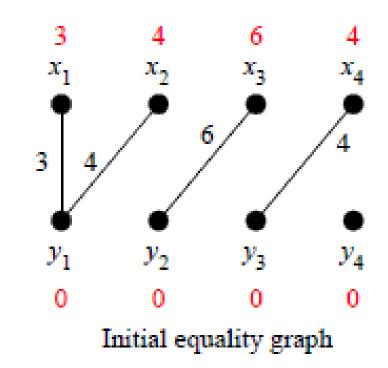
The Algorithm

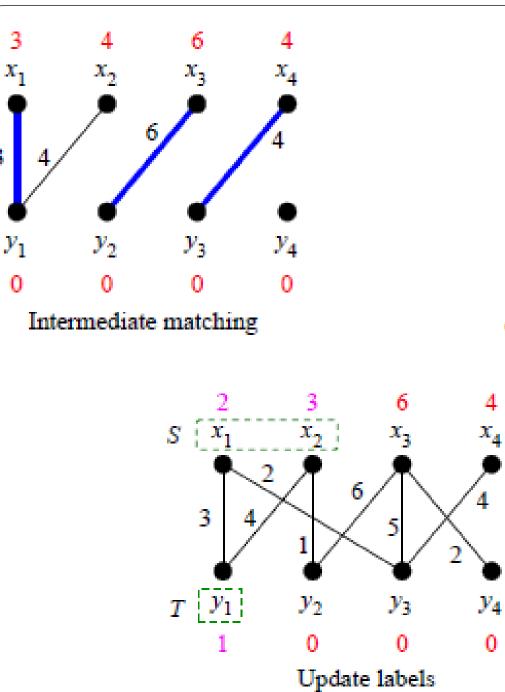
- 1. Start with the initial feasible mapping l, and the corresponding equality graph. Set $M = \emptyset$.
- 2. While M is not a perfect matching in the equality graph, repeat:
 - (a) Pick a free vertex $x \in X$.
 - (b) Set $S = \{x\}$ and $T = \emptyset$.
 - (c) While $N_l(S) \neq T$, repeat:
 - (i) Pick $y \in N_l(S) \setminus T$.
 - (ii) If y is free, augment M, and go to Step 2.
 - (iii) Otherwise, y is matched, say, to $z \in X$. Set $T = T \cup \{y\}$ and $S = S \cup \{z\}$.
 - (d) Here we have $N_l(S) = T$. Do the following two steps.
 - (iv) Compute α .
 - (v) Decrement l(x) by α for all $x \in S$, and increment l(y) by α for all $y \in T$.
 - (e) The condition $N_l(S) \neq T$ is again restored, so go to the top of the loop (c).

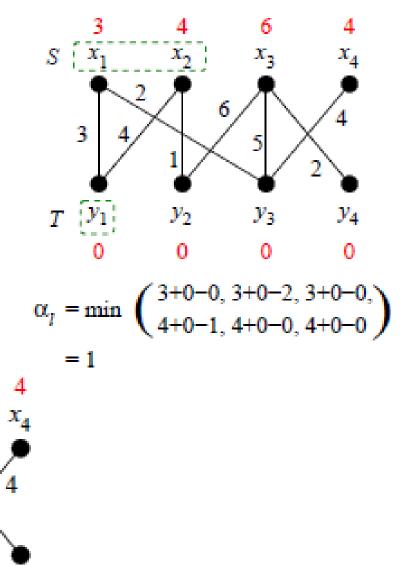
Example

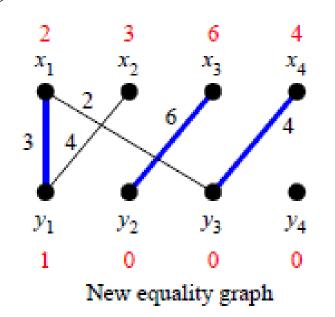
• We do not show the dummy 0-weight edges added, though they are there, and you include them in all calculations of the steps of the algorithm

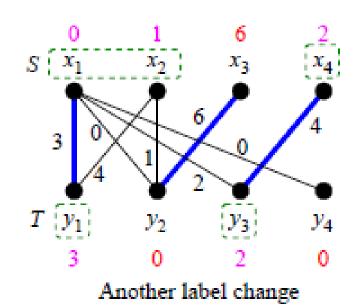


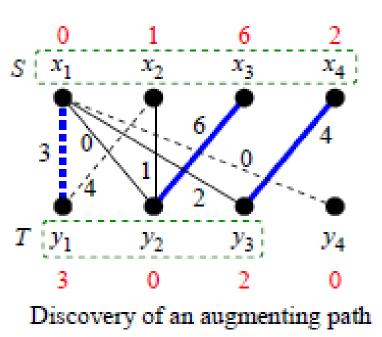






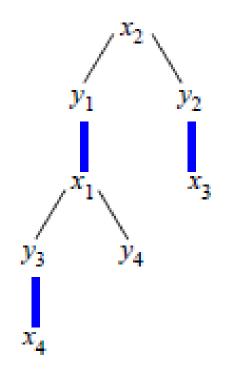






Alternating Tree Generated

- Tree generated while discovering the augmenting path in the last equality graph
 - From free vertex x₂, first go to y₂, then to x₃, cannot grow this anymore
 - Come back to x₂, explore y₁, then x₁, then y₃, then x₄, cannot grow this anymore
 - Come back to x₁, go to y₄, found an augmenting path, so stop
- Note that the tree depends on order of visit
 - May have gone to y₁ first from x₂, then the augmenting path would have been found before y₂ is explored (so y₂ and x₃ would not have been in the tree)
 - Similar possibility at x_1 if we had visited y_4 first



The alternating tree

- The final maximum weighted matching found by the Hungarian algorithm for the complete bipartite graph is {(x₁, y₄), (x₂, y₁), (x₃, y₂), (x₄, y₃)} with weight 14 (= 0 + 4 + 6 + 4)
- But (x_1, y_4) is a dummy edge (not in the original graph)
- So drop it
- Final maximum weighted matching M for the input graph is $\{(x_2, y_1), (x_3, y_2), (x_4, y_3)\}$ with weight 14
 - \mathbf{x}_1 remains a free vertex as it cannot be matched
 - Dropping dummy edge does not affect weight as its weight is 0

Time Complexity

- Let |X| = |Y| = n
- The outer while loop in Step 2 is executed once when the size of the matching increases by 1
 - So max. no of iterations = size of perfect matching = n
- What is the time for one iteration of the outer while loop?
 - Step 2(a) and 2(b) take O(1) time
 - The while loop in step 2(c) can run O(n) times
 - It can run when $N_{\ell}(S) \neq T$ until $N_{\ell}(S) = T$
 - After coming out of the loop when $N_{\ell}(S) = T$, it can then run again from step 2(e) after the relabeling is done which makes $N_{\ell}(S) \neq T$ again
 - Irrespective of where it runs from, every time the loop runs, it will either augment M and break to go to while loop in Step 2, or add one new vertex to S and T
 - Since only O(n) vertices can be added before an augmenting path is found, max. no. of iterations is O(n)
 - Time per iteration of the while loop in 2(c) = O(n)
 - If augmenting M, any path has maximum length O(n)
 - If not, picking y and finding x takes O(n) time
 - Total time for the while loop in Step $2(c) = O(n^2)$

At Step 2(d)

- Computing α_{ℓ} takes $O(n^2)$ time (in naïve approach)
- Updating the labels take O(n) time
- In the worst case, relabeling can be done O(n) times
 - Each time adding exactly one new node to $N_{\ell}(S)$
- Total O(n³) time
- So total time for one iteration of the outer while loop = $O(1) + O(n^2) + O(n^3) = O(n^3)$
- So total time for the algorithm = no. of iterations of Step 2 \times time for one iteration = O(n) \times O(n³) = O(n⁴) = O(|V|⁴)
- However, this uses a naïve approach that computes α_{ℓ} from scratch every time, not efficient

- Time for step 2(d) can be reduced to O(n²) instead of O(n³) per iteration of the outer while loop
 - At any relabeling step, note that you have to consider (x,y) pairs such that $x\in S,$ y not in T
 - \forall y not in T keep track of

 $slack(y) = \min_{x \in S} \{ \ell(x) + \ell(y) - w(x, y) \}$

- Initialize slack at beginning of outer while loop (Step 2) iteration in O(n) time as only one node in S
- When a node goes from X-S to S (inside inner while loop in step 2(c)), update slacks
 - O(n) time as only one vertex moved in S each time, so does not change the time for one iteration of the inner while loop we computed
 - So total $O(n^2)$ time over all iterations of the while loop in step 2(c), same as before
- During relabeling, compute α_{ℓ} as $\min_{y \in T} \text{slack}(y)$ in O(n) time
 - So total $O(n^2)$ time as relabeling can be done at most O(n) times as we have seen
- After computing α_{ℓ} update slacks: $\forall y$ not in T, slack(y) = slack(y) α_{ℓ}
 - O(n) time for each update, total $O(n^2)$ time over all relabeling
- Final Time complexity of Hungarian algorithm $O(n) \times O(n^2) = O(n^3) = O(|V|^3)$

• Note:

- There is an equivalent matrix based description of Hungarian algorithm that manipulates matrices instead of bipartite graphs
- The algorithm is the same, just the representation is different
- We will not do it in this class, but useful to know from a practical implementation point of view