Weighted Bipartite Matching

CS31005: Algorithms-II
Autumn 2020
IIT Kharagpur

Matching

- A matching in an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset of edges $M \subseteq E$, such that for all vertices $v \in V$, at most one edge of M is incident on v
- Size of the matching $M=|M|$
- Weight of the matching M (for weighted graphs) $=$ sum of the weights of the edges in M
- A maximum cardinality matching is a matching with maximum number of edges among all possible matchings
- A maximum weighted matching is a matching with highest weight among all other matchings in the graph
- Our problem: Given a weighted bipartite graph $\mathrm{G}=(\mathrm{V}$, E) with partitions X and Y , and positive weights on each edge, find a maximum weighted matching in G
- Models assignment problems with cost in practice
- Simple flow based techniques that we used for unweighted bipartite graphs no longer work for weighted graphs...

A matching with weight 14 (maximum cardinality
matching but not maximum weighted)

A maximum weighted matching with weight 21 (maximum weighted matching but not maximum cardinality)

Perfect Matching

- Given a matching M
- The vertices belonging to the edges of a matching are saturated by the matching; the others are unsaturated (also called free vertices)
- If a matching saturates every vertex of G, then it is a perfect matching
- For a perfect matching to exist, number of vertices must be even
- For bipartite graphs, the number of vertices in each partition must be the same
- For any graph with n vertices, size of a perfect matching is n/2

Augmenting Paths

- Given a matching M, a path between two distinct vertices u and v is called an alternating path if the edges in the path alternate between in M and not in M
- An alternating path P that begins and ends at unsaturated vertices is an augmenting path
- Replacing $\mathrm{M} \cap \mathrm{E}(\mathrm{P})$ by $(\mathrm{E}(\mathrm{P})-\mathrm{M})$ produces a new matching M^{\prime} with one more edge than M (i.e., augments M)

$\{x 1, x 4, y 4\}$ are unsaturated ($x 2, x 3, x 5, y 1, y 2, y 3\}$ are saturated
$\mathrm{P}=<\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 3, \mathrm{x} 5>$ is an
alternating path but not augmenting

$P=<y 2, x 3, y 3, x 4>$ is an augmenting path
$\mathrm{M} \cap \mathrm{E}(\mathrm{P})=\{(\mathrm{x} 3, \mathrm{y} 3)\}$
$E(P)-M=\{(x 3, y 2),(x 4, y 3)\}$
$M^{\prime}=\{(\mathrm{x} 1, \mathrm{y} 1),(\mathrm{x} 3, \mathrm{y} 2),(\mathrm{x} 4, \mathrm{y} 3)\}$
is a higher cardinality matching

Key Result

[Berge's Theorem] A matching M in a graph G is a maximum matching in G if and only if G has no augmenting path

- This gives another way of finding maximum cardinality matchings in bipartite graphs without depending on flows
- But does not help directly in finding a maximum weighted matching (can you show a counterexample?)
- Instead, the algorithm we learn will use it in a related graph

Hungarian Algorithm

- Also called Kuhn-Munkres algorithm
- Finds a maximum weighted perfect matching in a complete bipartite graph
- $|\mathrm{X}|=|\mathrm{Y}|$
- An edge (x, y) exists between each pair $\mathrm{x} \in \mathrm{X}$ and $\mathrm{y} \in \mathrm{Y}$
- So what if your input graph is not complete?
- Just add dummy vertices (if needed) to make the no. of vertices on both sides equal, and add edges that do not exist with weight 0
- Find the maximum weighted matching in this new graph, then throw away any dummy edge included in the matching
- Remaining edges will be the maximum weighted matching in your original input graph

Equality Subgraph

- Assign a label $\boldsymbol{\ell}(\mathrm{u})$ to every vertex u
- Feasible labelling

$$
\boldsymbol{\ell}(\mathrm{x})+\boldsymbol{\ell}(\mathrm{y}) \geq \mathrm{w}(\mathrm{x}, \mathrm{y}) \text { for any edge }(\mathrm{x}, \mathrm{y})
$$

- Given a feasible labelling $\boldsymbol{\ell}$, Equality Subgraph $\mathrm{G}_{\boldsymbol{\ell}}=\left(\mathrm{V}, \mathrm{E}_{\ell}\right)$ where
- $\mathrm{E}_{\boldsymbol{\ell}}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \in \mathrm{X}, \mathrm{Y} \in \mathrm{Y}, \boldsymbol{\ell}(\mathrm{x})+\boldsymbol{\ell}(\mathrm{y})=\mathrm{w}(\mathrm{x}, \mathrm{y})\}$
- Why is it important?
[Kuhn-Munkres Theorem]: Let $\boldsymbol{\ell}$ be a feasible labeling of G. If M is a perfect matching in G_{ℓ}, then M is a maximum weighted matching in G.

Hungarian Algorithm: Basic Idea

- Start with any feasible labeling $\boldsymbol{\ell}$ and $\mathrm{M}=\varnothing$
- While M is not a perfect matching repeat

1. Find an augmenting path for M in E_{ℓ} and augment M
2. If no augmenting path exists,

Improve $\boldsymbol{\ell}$ to $\boldsymbol{\ell}^{\prime}$ such that at least one new
edge is added to the equality subgraph
Go to Step 1

Initial Feasible Labeling

- Start with this feasible labelling
- $\boldsymbol{\ell}(\mathrm{x})=\max \{\mathrm{w}(\mathrm{x}, \mathrm{y}) \mid \mathrm{y} \in \mathrm{Y}\}$ for all $\mathrm{x} \in \mathrm{X}$
- $\boldsymbol{\ell}(\mathrm{y})=0$
- Guarantees that in the equality subgraph G_{ℓ}
- E_{ℓ} has at least one edge from every vertex $\mathrm{x} \in \mathrm{X}$

Some Definitions

- Let $\boldsymbol{\ell}$ be a feasible labeling
- Neighbor of $u \in V$
- $\mathrm{N}_{\ell}(\mathrm{u})=\left\{\mathrm{v}:(\mathrm{u}, \mathrm{v}) \in \mathrm{E}_{\ell}\right\}$
- For any set $S \subseteq V$, neighborhood of S
- $\mathrm{N}_{\ell}(\mathrm{S})=\mathrm{U}_{\mathrm{u} \in \mathrm{S}} \mathrm{N}_{\ell}(\mathrm{u})$
- We will maintain two sets, S and T
- At any time, S and T will keep information about the alternating/augmenting paths
- S will have a subset of vertices in X
- T will have a subset of vertices in $\mathrm{N}_{\boldsymbol{\ell}}(\mathrm{S})$
- S and T together will keep track of a tree of alternating paths rooted at some free vertex in X (which will be in S)

How to find the matching

- Find a free vertex $x \in X$
- Must exist unless you have reached the perfect matching
- Create a tree rooted at X such that all paths in the tree from x are alternating
- Vertices at even levels $(0,2, \ldots)=$ vertices in S
- These will be in X
- Vertices at odd levels $(1,3, \ldots)=$ vertices in T
- These will be inY
- If we encounter a free vertex at odd level, we have found an augmenting path
- Augment and continue

How to improve the labeling

- Let $S \subseteq X$ and $T=N_{\ell}(S) \neq Y$
- Let

$$
\alpha_{\boldsymbol{\ell}}=\min \{\boldsymbol{\ell}(\mathrm{x})+\boldsymbol{\ell}(\mathrm{y})-\mathrm{w}(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \in \mathrm{~S}, \mathrm{y} \text { not in } \mathrm{T}\}
$$

- Note that $\alpha_{\ell}>0$
- Then set

$$
\begin{aligned}
\boldsymbol{\ell}^{\prime}(\mathrm{v}) & =\boldsymbol{\ell}(\mathrm{v})-\alpha_{\ell} & & \text { if } \mathrm{v} \in \mathrm{~S} \\
& =\boldsymbol{\ell}(\mathrm{v})+\alpha_{\ell} & & \text { if } \mathrm{v} \in \mathrm{~T} \\
& =\boldsymbol{\ell}(\mathrm{v}) & & \text { otherwise }
\end{aligned}
$$

- The updated labeling $\boldsymbol{\ell}^{\prime}$ is a feasible labeling with the following properties:
- If $(x, y) \in E_{\ell}$ for $x \in S, y \in T$ then $(x, y) \in E_{\ell^{\prime}}$
- Decrease in $\boldsymbol{\ell}(\mathrm{x})$ is same as increase in $\boldsymbol{\ell}(\mathrm{y})$
- If $(x, y) \in E_{\ell}$ for x not in S, y not in T then $(x, y) \in E_{\ell^{\prime}}$
- Labels remain the same for them
- There is some edge $(x, y) \in E_{\ell^{\prime}}$ for $x \in S$, y not in T
- At least for one edge ((the one with the minimum in α_{ℓ} computation), $\boldsymbol{\ell}(\mathrm{x})$ is decreased by the excess, $\boldsymbol{\ell}(\mathrm{y})$ is unchanged, so brings in the edge into the new equality graph
- This shows that the new labelling increases the neighborhood of S

The Algorithm

1. Start with the initial feasible mapping l, and the corresponding equality graph. Set $M=0$.
2. While M is not a perfect matching in the equality graph, repeat:
(a) Pick a free vertex $x \in X$.
(b) Set $S=\{x\}$ and $T=\emptyset$.
(c) While $N_{l}(S) \neq T$, repeat:
(i) Pick $y \in N_{l}(S) \backslash T$.
(ii) If y is free, augment M, and go to Step 2 .
(iii) Otherwise, y is matched, say, to $z \in X$. Set $T=T \cup\{y\}$ and $S=S \cup\{z\}$.
(d) Here we have $N_{l}(S)=T$. Do the following two steps.
(iv) Compute α.
(v) Decrement $l(x)$ by α for all $x \in S$, and increment $l(y)$ by α for all $y \in T$.
(e) The condition $N_{l}(S) \neq T$ is again restored, so go to the top of the loop (c).

Example

- We do not show the dummy 0 -weight edges added, though they are there, and you include them in all calculations of the steps of the algorithm

Initial labeling

0
Initial equality graph
Intermediate matching

Discovery of an augmenting path

Alternating Tree Generated

- Tree generated while discovering the augmenting path in the last equality graph
- From free vertex x_{2}, first go to y_{2}, then to x_{3}, cannot grow this anymore
- Come back to x_{2}, explore y_{1}, then x_{1}, then y_{3}, then x_{4}, cannot grow this anymore
- Come back to x_{1}, go to y_{4}, found an augmenting path, so stop
- Note that the tree depends on order of visit
- May have gone to y_{1} first from x_{2}, then the augmenting path would have been found before y_{2} is explored (so y_{2} and x_{3} would not have been in the tree)
- Similar possibility at x_{1} if we had visited y_{4} first
- The final maximum weighted matching found by the Hungarian algorithm for the complete bipartite graph is $\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{4}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{4}, \mathrm{y}_{3}\right)\right\}$ with weight $14(=0$ $+4+6+4)$
- But $\left(\mathrm{x}_{1}, \mathrm{y}_{4}\right)$ is a dummy edge (not in the original graph)
- So drop it
- Final maximum weighted matching M for the input graph is $\left\{\left(\mathrm{x}_{2}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{4}, \mathrm{y}_{3}\right)\right\}$ with weight 14
- x_{1} remains a free vertex as it cannot be matched
- Dropping dummy edge does not affect weight as its weight is 0

Time Complexity

- Let $|\mathrm{X}|=|\mathrm{Y}|=\mathrm{n}$
- The outer while loop in Step 2 is executed once when the size of the matching increases by 1
- So max. no of iterations $=$ size of perfect matching $=n$
- What is the time for one iteration of the outer while loop?
- Step 2(a) and 2(b) take $O(1)$ time
- The while loop in step 2(c) can run $\mathrm{O}(\mathrm{n})$ times
- It can run when $\mathrm{N}_{\ell}(\mathrm{S}) \neq \mathrm{T}$ until $\mathrm{N}_{\ell}(\mathrm{S})=\mathrm{T}$
- After coming out of the loop when $\mathrm{N}_{\boldsymbol{l}}(\mathrm{S})=\mathrm{T}$, it can then run again from step 2(e) after the relabeling is done which makes $\mathrm{N}_{\boldsymbol{\ell}}(\mathrm{S}) \neq \mathrm{T}$ again
- Irrespective of where it runs from, every time the loop runs, it will either augment M and break to go to while loop in Step 2, or add one new vertex to S and T
- Since only $\mathrm{O}(\mathrm{n})$ vertices can be added before an augmenting path is found, max. no. of iterations is $\mathrm{O}(\mathrm{n})$
- Time per iteration of the while loop in 2(c) $=\mathrm{O}(\mathrm{n})$
- If augmenting M, any path has maximum length $O(n)$
- If not, picking y and finding x takes $O(n)$ time
- Total time for the while loop in Step 2(c) $=\mathrm{O}\left(\mathrm{n}^{2}\right)$

At ${ }^{\text {Step 2(d) }}$

- Computing α_{ℓ} takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time (in naïve approach)
- Updating the labels take $\mathrm{O}(\mathrm{n})$ time
- In the worst case, relabeling can be done $\mathrm{O}(\mathrm{n})$ times
- Each time adding exactly one new node to $\mathrm{N}_{\ell}(\mathrm{S})$
- Total $O\left(n^{3}\right)$ time
- So total time for one iteration of the outer while loop $=$ $\mathrm{O}(1)+\mathrm{O}\left(\mathrm{n}^{2}\right)+\mathrm{O}\left(\mathrm{n}^{3}\right)=\mathrm{O}\left(\mathrm{n}^{3}\right)$
- So total time for the algorithm $=$ no. of iterations of Step 2 \times time for one iteration $=\mathrm{O}(\mathrm{n}) \times \mathrm{O}\left(\mathrm{n}^{3}\right)=\mathrm{O}\left(\mathrm{n}^{4}\right)=$ $\mathrm{O}\left(|\mathrm{V}|^{4}\right)$
- However, this uses a naïve approach that computes α_{ℓ} from scratch every time, not efficient
- Time for step 2(d) can be reduced to $\mathrm{O}\left(\mathrm{n}^{2}\right)$ instead of $\mathrm{O}\left(\mathrm{n}^{3}\right)$ per iteration of the outer while loop
- At any relabeling step, note that you have to consider (x, y) pairs such that $\mathrm{x} \in \mathrm{S}$, y not in T
- $\forall y$ not in T keep track of

$$
\operatorname{slack}(\mathrm{y})=\min _{\mathrm{x} \in \mathrm{~S}}\{\ell(\mathrm{x})+\ell(\mathrm{y})-\mathrm{w}(\mathrm{x}, \mathrm{y})\}
$$

- Initialize slack at beginning of outer while loop (Step 2) iteration in O(n) time as only one node in S
- When a node goes from X-S to S (inside inner while loop in step 2(c)), update slacks
- $O(n)$ time as only one vertex moved in S each time, so does not change the time for one iteration of the inner while loop we computed
- So total $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time over all iterations of the while loop in step 2(c), same as before
- During relabeling, compute α_{ℓ} as $\min _{\mathrm{v} \in \mathrm{T}} \operatorname{slack}(\mathrm{y})$ in $\mathrm{O}(\mathrm{n})$ time
- So total $O\left(n^{2}\right)$ time as relabeling can be done at most $O(n)$ times as we have seen
- After computing α_{ℓ} update slacks: $\forall \mathrm{y}$ not in $\mathrm{T}, \operatorname{slack}(\mathrm{y})=\operatorname{slack}(\mathrm{y})-\alpha_{\ell}$
- $\mathrm{O}(\mathrm{n})$ time for each update, total $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time over all relabeling
- Final Time complexity of Hungarian algorithm

$$
\mathrm{O}(\mathrm{n}) \times \mathrm{O}\left(\mathrm{n}^{2}\right)=\mathrm{O}\left(\mathrm{n}^{3}\right)=\mathrm{O}\left(|\mathrm{~V}|^{3}\right)
$$

- Note:
- There is an equivalent matrix based description of Hungarian algorithm that manipulates matrices instead of bipartite graphs
- The algorithm is the same, just the representation is different
- We will not do it in this class, but useful to know from a practical implementation point of view

