
Network Flow 
CS31005: Algorithms-II 

Autumn 2020 
IIT Kharagpur 

 



Network Flow 
 Models the flow of items through a network 
 Example 
 Transporting goods through the road/rail/air network 
 Flow of fluids (oil, water,..) through pumping stations and 

pipelines 
 Packet transfer in computer networks 
 Many others in a variety of fields… 

 Has many different versions with wide practical 
applicability 

 We will study the maximum flow problem 



The Maximum Flow Problem 
 Input: a directed graph G = (V, E) with 
 Each edge (u,v) ∈ E has a capacity c(u, v) ≥ 0 
 Two distinguished vertices s (source) and t (sink) 

 Output: Flow in G, a function f: E → R such that 
 0 ≤ f(u,v) ≤ c(u,v) for each (u,v) in E (capacity constraint) 
 ∑u ∈ V, (u, v) ∈ E f(u,v) = ∑w ∈ V, (v, w) ∈ E f(v, w)   for all v 

in V\{s, t}                       (flow conservation constraint) 

 Easy to see that this means total flow leaving s must be 
the total flow entering t 

 Flow satisfying the two constraints is called a feasible flow 
 



 Value of the  flow in the network  

        |f| = ∑u ∈ V, (s, u) ∈ E f(s,u) = ∑u ∈ V, (u, t) ∈ E f(u, t) 

 
 Maximum Flow Problem: Find a feasible flow f such that 

the |f| is maximum among all possible feasible flows 
 The assigned flow values on edges can model amount of 

goods in a transportation network,  oil in a pipeline 
network, packets in a  computer network along 
road/pipeline/link etc. to maximize the total amount of 
items moved from a source to a destination 
 



Example  

s 

 v  x 

t 

w  u 
9/16 

7/12 

12/20 

4/10 
2/4 

0/9 5/7 

4/4 7/13 

9/14 

A feasible flow with |f| = 16  

A maximum flow with |f| = 23  

s 

 v  x 

t 

w  u 
11/16 

12/12 

19/20 

0/10 
1/4 

0/9 7/7 

4/4 12/13 

11/14 



Algorithms for Maximum Flow 
 Follows two broad approaches 
 The Ford-Fulkerson Method 
 Originally proposed by Ford and Fulkerson in 1956 
 Actually defines a method,  the original paper did not specify 

any particular implementation of some steps 
 Many algorithms proposed later following the method, with 

specific implementations of steps   
 Preflow-Push Method 
 Presented by Andrew Goldberg and Robert Tarjan in 1986 

(ACM STOC, later detailed journal version in JACM in 
1988) 

 A totally different approach from the Ford-Fulkerson 
methods 



Ford-Fulkerson Method 
 Before starting the algorithm, we first give an equivalent 

modelling of the problem by 
 Extending the domain of capacity c and flow f to V×V 

(instead of keeping to E only) 
 Modifying the constraints appropriately 



 Capacity c:  V×V → R such that c(u,v) = 0 if (u,v) not 
in E 

 Flow f : V × V → R satisfying: 
 Capacity constraint: For all u, v ∈V, f(u,v) ≤ c(u,v) 
 Skew symmetry: For all u, v ∈V, f(u,v) =  – f(v,u)  
 Flow conservation: For all u ∈ V – {s, t}, ∑v∈V f(u,v) = 0 

 
The value of the flow f is defined to be |f| = ∑v∈V f(s,v) 
The maximum flow problem is to find the flow with 

maximum value (same as before) 
 



 What does this mean? Consider different possibilities for 
a pair (u,v) 
 None of the edges (u,v) or (v,u) exist 
 So c(u,v) = c(v,u) = 0 
 So f(u,v) = f(v,u) must be 0 as otherwise capacity 

constraint and skew symmetry are violated 
 Only one of the edges exist (say (u,v)) 
 So c(u,v) ≥ 0 and c(v,u) = 0 
 If f(u,v) = 0, then f(v,u) = 0 (skew symmetry) 
 If f(u,v) > 0, then f(v,u) < 0 (skew symmetry) 
 If f(u,v) < 0 then f(v,u) > 0 (skew symmetry), But this 

violates capacity constraint for (v,u). So f(u,v) cannot be 
negative 
 



 Both the edges (u,v) and (v,u) exist 
 So c(u,v) ≥ 0 and c(v,u) ≥ 0 
 So seems like both f(u,v) and f(v,u) can be positive (by 

capacity constraint) 
 But that would break skew symmetry, so both cannot be 

positive 
 The way to think about it is to consider the “net flow” 
 If you ship 20 units from A to B and ship 5 units from B to 

A, the net flow into B is not 20, it is 20 – 5 = 15. Similarly 
the net flow into A is not 5, but (-20) + 5 = -15, indicating 
it is actually an outflow 

 In general, for any two vertices u, v, if f(u,v) > 0, then 
f(v,u) must be < 0 (skew symmetry) 

 
 



Example 

f(s, u)  = 9,   f(u, s) = – 9 

f(s, v) = 7,    f(v, s) = – 7 

f(u,w) = 7,   f(w,u) = – 7 

f(u,v) = 4 – 2 = 2 

f(v, u) = 2 – 4 = -2 

f(v,x) = 9,    f(x,v) = – 9 

f(w,v) = 0,   f(v, w) = 0 

f(u, x) = 0,  f(x, u) = 0 

similar for other pairs in V×V 

s 

 v  x 

t 

w  u 
9/16 

7/12 

12/20 

4/10 
2/4 

0/9 5/7 

4/4 7/13 

9/14 



 With our new definition of flow, we will represent the 
graph to show f values on edges in red (not necessarily 
actual shipments) 

 Also, we will only show positive f values on the edges of 
the graph  
 So for edges (v,u) and (w,v), we do not show the f values 

because f(v,u) = – 2 and f(w,v) = 0 

s 

 v  x 

t 

w  u 
9/16 

7/12 

12/20 

2/10 
 4 

9 5/7 

4/4 7/13 

9/14 



 Did we lose anything from the earlier model? 
 For edges (u,v) and (v,u) (i.e for the case when edges exist in 

both direction between a pair of vertices), we are now 
representing only the net flow, not how exactly the net flow is 
achieved 
 For example, the net flow of 2 from u to v could have been achieved 

in different ways like “ship 6 units from u to v and 4 units from v to 
u”, “ship 2 units from u to v and 0 units from v to u”,….. 

 So this model is not exactly equivalent to the model we had,  
 For the earlier model, actual shipments are the flow f 
 but ok as in practice as no need to ship in both directions 

 If you have edge only in one direction, f will show the actual 
shipment 



Residual Network 
 Let f be a flow in a flow network G = (V, E) with source s 

and sink t.  
 Residual capacity of (u,v) = amount of additional flow that 

can be pushed from a node u to node v before exceeding the 
capacity c(u,v)  

                     cf(u, v) = c(u, v) – f(u, v) 
 The residual graph of G induced by f is Gf = (V, Ef), where 

                     Ef = {(u, v) ∈ V × V : cf(u, v) > 0} 
    Edges of the residual graph are called  residual edges, with 

capacity cf 
 



 Augmenting path: a simple path from source s to sink t in 
the residual graph Gf  

 Residual capacity of an augmenting path p  
 cf(p) = min{cf(u, v) : (u, v) is on p} 

cf(p) gives the maximum amount by which the flow on each 
edge in the path p can be increased 

                        
 



Example 

s 

 v  x 

t 

w  u 
9/16 

7/12 

12/20 

2/10 
4 

9 5/7 

4/4 7/13 

9/14 
 Residual capacities: 

cf(s,u) = 16 – 9 = 7,     cf(u,s) = 0 – (– 9) = 9 
cf(s,v) = 13 – 7 = 6,      cf(v,s) = 0 – (– 7) = 7 
cf(u,v) = 10 – 2 = 8,     cf(v, u) = 4 – (– 2) = 6 
cf(u,w) = 12 – 7 = 5,    cf(w, u) = 0 – (– 7) = 5 
cf(w,v) = 9 – 0 = 9,       cf(v, w) = 0 – 0 = 0 
cf(x,t) = 4 – 4 = 0,        cf(t,x) = 0 – 0 = 0   
and so on for the other pairs 

 For any a, b in V, cf(a,b) = 0 if neither (a,b) nor (b,a) is an edge 
(as c and f are both 0 for such pairs), so we do not look at them 
 



 Residual Graph (edges with 0 residual capacity are never shown) 
 
 
 
 
 
 
 
 
 

 Note that residual graph may have edges where G did not 
(shown in color blue) 

 It also may NOT have edges where G has one, ex. (x,t) 
 The residual capacity of the edge is 0 
 Such edges are called saturated 

s 

 v  x 

t 

w  u 

7 

5 8 

8 
2 

9 2 
6 

5 

9 

7 

5 

5 
12 

9 

4 



 Augmenting Path – path  from s to t 
 
 
 
 
 
 
 
 

 One path shown in bold grey, <s,u,w,t> with residual 
capacity = min(7, 5, 8) = 5 
 We can increase (“augment”) the flow on each edge of the 

path by 5 to get a new feasible flow with higher value 

s 

 v  x 

t 

w  u 

7 

5 8 

8 
2 

9 2 
6 

5 

9 

7 

7 

5 
12 

9 

4 



Ford-Fulkerson Algorithm 
1. Start with a feasible flow f (usually f=0 for all (u,v)) 
2. Create the residual graph Gf 

3. Find an augmenting path p in Gf 

4. Augment the flow in G 
5. Repeat 2-4 until there is no augmenting path 

 



 Augmenting  the flow along path p with residual capacity c 
 
 
 
 
 
 
 
 Note that either (u,v) or (v,u) must be an edge in G (or (u.v) 

cannot be in Gf) 
 If (u,v) is an edge, this increases f (u,v) 
 If (u,v) is not an edge, this actually decreases f(v,u) 

 
 



s 

 v  x 

t 

w  u 
4/16 

4/12 

0/20 

10
 

4 4/9 7 

4/4 0/13 

4/14 

s 

 v  x 

t 

w  u 
11/16 

4/12 

7/20 

7/
10

 

4 4/9 7/7 

4/4  13 

11/14 

s 

 v  x 

t 

w  u 
16 

12 

20 

10 4 
9 7 

4 13 

14 

s 

 v  x 

t 

w  u 

12 
8 20 

10 
4 

5 7 
13 

10 

4 
4 

4 

4 

4 

Residual graph Flow Assignment 



s 

 v  x 

t 

w  u 
11/16 

12/12 

15/20 

10
 

1/
4 

4/9 7/7 

4/4 8/13 

11/14 

s 

 v  x 

t 

w  u 
11/16 

12/12 

19/20 

10
 

1/
4 

9 7/7 

4/4 12/13 

11/14 

s 

 v  x 

t 

w  u 

5 
8 13 

3 
11 

5 13 

3 

11 
4 

7 
7 

11 

4 
4 

s 

 v  x 

t 

w  u 

5 
5 

11 
3 

5 
5 

3 

11 

8 

12 

7 
15 

11 

4 
4 



No augmenting path in the residual graph, so stop 
Maximum Flow |f| = 23 

s 

 v  x 

t 

w  u 

5 
1 

11 
3 

9 
1 

3 

11 

12 

12 

7 
19 

11 

4 



Proof of Correctness 
 We first need some definitions  
 A cut (S, T) of a flow network G = (V, E) is a partition of  

V into S and T = V – S, such that s ∈ S and t ∈ T 
 If f is a flow then the net flow across the cut (S, T) , f(S, T), 

is the sum of the flows (f) of all pairs (u,v) with u in S and 
v in T 

 The capacity of the cut (S, T), c(S, T), is the sum of the 
capacities of all edges (u,v) with u in S and V in T  
 Of course, f(S, T) ≤ c(S, T) 

 A minimum cut of a network is a cut whose capacity is 
minimum over all possible cuts of the network 

 

 



 Consider the cut (S={s, u, v},  T={w, x, t}) 
 f(S, T) = f(u,w) + f(v,w) + f(v,x) 

      =  8 + (-1) + 10 = 17 
 c(S, T) = c(u,w) + c(v,x) = 12 + 14 = 26 

s 

 v  x 

t 

w  u 
10/16 

8/12 

12/20 

2/10 
4 

1/9 5/7 

5/5 7/13 

10/14 



Lemma 1: Let f be a flow in a network G with source s 
and sink t, and  let (S, T) be a cut of G. Then the net flow 
across (S, T) is f(S, T) = |f|. 
 
Proof:  
f(S, T) = f(S,V) – f(S,S) 
 = f(S,V) 
 = f(s, V) + f(S – s,V) 
 = f(s,V) 
 = |f| 
 



 

Lemma 1 implies that the net flow across any cut is the 
same (= value of flow). 
 
Corollary 2: The value of any flow f in a flow network G is 
bounded from above by the capacity of any cut of G, and 
hence by the capacity of the minimum cut. 

 



Theorem 3 (Max-flow min-cut theorem): If f is a flow in a 
flow network G = (V, E) with source s and sink t, then the 
following conditions are equivalent: 

1. f is a maximum flow in G 
2. The residual network Gf contains no augmenting paths 
3. |f| = capacity of the minimum cut 

 
Proof:  
1 implies 2 is obvious, as otherwise |f| can be increased by 
increasing the flow along the augmenting path 



2 implies 3:  
Suppose that Gf  has no augmenting paths. Let  
    S = {v € V: there exists a path from s to v in Gf} and  
    T = V – S.  
Then (S,T) is a cut as s is in S and t is not in S as there is no 
path from s to t in Gf.  
For any u € S and v € T, we have f(u,v) = c(u,v) as 
otherwise (u,v) is in Gf, which would mean v is in S, which 
is a contradiction. Therefore, by Lemma 1, |f| = f(S,T) = 
c(S,T) 
3 implies 1: By corollary 2, |f| ≤ c(S,T) for all cuts (S,T). 
Then, |f| = c(S,T) implies |f| is a maximum flow. 

 



Time Complexity 
 Original Ford-Fulkerson algorithm does not specify how to 

find an augmenting path 
 Can find in any order 

 Assume all capacities are integer 
 Let f* = maximum flow 
 Lines 1-3 (Initialization) takes O(|E|) time 
 No. of times the while loop (no. of times an augmenting path 

is found) is executed is bounded above by |f*| 
 As |f| increases by at least 1 in each augmentation 

 Each iteration of the while loop takes O(|E|) time 
 So worst case time complexity O(|E||f*|) 
 This is not polynomial, it is pseudo-polynomial 



 This bound is tight 



Edmonds-Karp Algorithm 
 Proposed in 1972 
 Almost same as Ford-Fulkerson 
 Main difference: Uses BFS to find augmenting paths in 

residual graph instead of DFS 
 You can prove that 
 If the Edmonds-Karp algorithm is run on a flow network G = 

(V, E) with source s and sink t, then for all vertices  v ∈ V – {s, 
t}, the shortest distance δf(s, v) in the residual network Gf 
increases monotonically with each flow augmentation 

 The total number of flow augmentations performed by the 
Edmonds-Karp algorithm is O(VE) 

 This gives time complexity of Edmonds-Karp as O(VE2), as 
BFS can be done in O(E) 



What if there are multiple sources and 
sink? 

 Suppose there are multiple sources s1, s2, s3,..sp and 
multiple sinks t1, t2, t3, ….tq 

 How do we maximize the sum of the flows from all the 
sources to all the sinks? 

 Can easily use the standard maximum flow problem 
 Add a “supersource” s with edge (s, sj) from s to all sources 

sj with capacity ∞ 
 Add a “supersink” t with edge (tj, t) from all sinks tj to t 

with capacity ∞ 
 Solve the maximum flow problem with s as source and t as 

sink 
 





Application: Maximum Cardinality 
Bipartite Matching 
 Bipartite Graph: an undirected  graph G = (V, E) such 

that the vertex set can be partitioned V = L ∪ R where 
L and R are disjoint and there is no edge between two 
vertices in L or two vertices in R 

 A matching in an undirected graph G = (V, E) is a subset 
of edges M ⊆ E, such that for all vertices v ∈ V, at most 
one edge of M is incident on v. 

 A maximum cardinality matching is a matching with 
maximum number of edges among all possible matchings 
 Also simply called maximum matching for unweighted 

graphs 

 



L R 

(a)A matching with cardinality 2 
(b) A maximum matching with cardinality 3 

(a) 
L R 

(b) 



 Given the undirected bipartite graph G = (V, E) with 
partitions L and R, create a flow network G’ = (V’, E’) 
as follows 
 Add two new vertices s, t. So V’ = V U {s, t} 
 For each node u in L, add a directed edge (s,u) with 

capacity 1 to E’ 
 For each node v in R, add a directed edge (v,t) with 

capacity 1 to E’ 
 For each edge (u,v) in E with u in L and v in R, add a 

directed edge (u, v) with capacity 1 to E’ 
 



L R 
L R 

s t 

All capacities are 1 



 Now solve the maximum flow problem from s to t in G’ 
 The edges of G with corresponding edges in G’ with 

flow = 1 correspond to the maximum matching 

s t 

Maximum flow found 
Corresponding Maximum 
Matching 



Application: Edge Connectivity 

 Given an undirected graph G = (V, E), edge connectivity 
of G is the minimum number of edges that have to be 
removed to disconnect the graph 
 A graph is called k-edge-connected if its edge connectivity is 

at least k 
 Problem: Find the edge connectivity of a given undirected 

graph  
 Important practical problem in various forms for different 

types of network design 
 Example: to avoid disruption in a computer network, need 

to ensure that a small number of link failures cannot 
disconnect the network 



 We will use the maximum flow problem 
 We know that the maximum flow is equal to the capacity 

of the minimum (S,T) cut 
 So if we set all capacities to 1, the maximum flow value 

gives the minimum number of edges that goes across any 
cut (S,T),  and so, the minimum number of edges that 
needs to be removed so that there is no path from s to t 

 But the flow network is a directed graph, we need to 
solve it for an undirected graph 
 Easy. Maximum flow algorithms work on undirected 

graphs simply by converting it first to a directed graph, 
with each undirected edge replaced by two directed edges 

 



 We also need to consider disconnection of any two 
vertices, not just two specified ones like s and t 
 So (u,v)-cuts for any two vertices u and v 
 Simple solution: 
 For each pair of vertices (u,v), set s=u, t=v and find the 

minimum cut size by solving the maximum flow problem 
 Take the minimum over all (u,v) pairs 
 Time complexity = no. of distinct pairs × max-flow time 
  = O(|V|2) × O(|V||E|2) (using Edmonds-
Karp) 
  = O(|V|3|E|2) 
  Can do better, no need to consider all pairs 



Input: Connected graph G = (V, E) 
 

choose any vertex p in V 
min_size = |E| 
for all vertices q ≠ p do 

find maxflow M in directed graph G’ = (V, E’) 
   where E’ = { (u,v), (v,u) | (u,v) in E } 
   s = p, t = q, and all capacities = 1 
min_size = min (min_size, M) 

edge connectivity of G = min_size 
 

Why is it sufficient to just find edge-connnectivity between a fixed p 
and all other vertices (and not between all pairs of vertices)? 

Time Complexity = (|V|2|E|2)   (using Edmonds-Karp) 
 



Preflow-Push Method 
 Also called Push-Relabel method as it is based on two 

basic operations, push and relabel 
 Main difference from Ford-Fulkerson based algorithms 
 Do not need to maintain the flow-conservation property 

throughout the execution 
 Total inflow at a vertex can be greater than total outflow 

from it in intermediate steps 
 But in the final solution, they must be the same as before 



 Constraints satisfied by f : V × V → R in intermediate 
steps of preflow-push: 
 Capacity constraint : For all u, v ∈V, f(u,v) ≤ c(u,v) 
     (same as before) 
 Skew symmetry : For all u, v ∈V, f(u,v) =  – f(v,u)  

     (same as before) 

 Flow constraint: For all v ∈ V – {s}, ∑u∈V f(u,v) ≥  0 
         (Relaxed, allows net flow into v to be greater than 0) 

 Excess flow into v, e(v) = net flow into v = ∑v∈V f(u,v) 
 A vertex is called active or overflowing if e(v) > 0 
 f is called a preflow 
 



An Example Preflow 

 e(u) = 2 (active) 
 e(v) = 4 (active) 
 e(w) = 2 (active) 
 e(x) = 0 

 

s 

 v  x 

t 

w  u 
12/16 

6/12 

10/20 

4/10 6/7 

4/4 10/13 

10/14 



Basic Idea 
 Think of the vertices at different heights 
 Initially s is at height |V| and all others at height 0 

 Think that each vertex has an arbitrarily large temporary 
storage 

 Flow is pushed only downhill, from a vertex with higher 
height to a vertex with lower height 

 Start the algorithm by pushing as much flow as possible from 
s to all its outgoing edges (i.e., push up to capacity of each 
edge from s) 
 Initial preflow 

 The flow pushed first gets stored in the storage of the vertices 
at the other end 



Initial Preflow 

 e(u) = 16 (active) 
 e(v) = 13 (active) 
 e(w) = 0 
 e(x) = 0 

 

s 

 v  x 

t 

w  u 
16/16 

12 

 20 

  10  7 

4 13/13 

  14 



 Any other vertex u pushes this flow along each edge 
whenever possible (if the vertex v at the other end of the 
edge is at a lower height, i.e, is downhill, and the edge 
(u,v) is not saturated) 
 PUSH operation 

 What if no such vertex v is found? 
 All vertices at the other end of outgoing edges have height 

≥ this node’s height 
 In this case, increase vertex u’s height by 1 + minimum 

height of any vertex at other end of an unsaturated edge 
 RELABEL operation 



 Continue until flow cannot be pushed forward anymore  
 All edges across the minimum cut get saturated 

 But now you may have vertices with excess flow left in 
them 

 Push this flow back towards s  
 RELABEL to heights greater than |V| 
 Eventually all excess flows go out through s (whose height 

always stays at |V|) 
 The final flow satisfies the flow conservation constraint at 

each vertex 
 So two types of operation, PUSH and RELABEL 
 This  is why preflow-push method is also called the push-

relabel method 
 



The Height Function 
 The same notion of residual capacity cf and residual graph 

Gf  as before is also used here 

 Given a preflow f, a function h: V → N is a height 
function if it satisfies the following properties: 
 h(s) = |V| 
 h(t) = 0 
 h(u)  ≤  h(v) + 1 for any residual edge (u,v) ∈ Ef  

 

 



 It is usually called the distance function, as it gives a 
lower bound on the distance from u to t in Gf 
 The text uses the term height to relate to downhill-uphill 

analogy, so let us use it also 

 Note that the definition implies that given any preflow f, 
for any two vertices u, v, if h(u) > h(v) + 1, then (u,v) is 
not an edge in the residual graph Gf 

  
 



PUSH Operation 
 PUSH(u,v) 
 Precondition:  
  e(u) > 0 (i.e., u is active) 
  cf(u,v) > 0 
  h(u) = h(v) + 1 
 Action: 
  Let df(u,v) = min(e(u), cf(u,v))  
  Push df(u,v) amount of flow from u to v 
 PUSH is saturating if cf(u,v) = 0 after the PUSH, 

otherwise non-saturating 





RELABEL Operation 
 RELABEL(u) 
 Precondition: 
  e(u) > 0 (i.e., u is active) 

  h(u) ≤ h(v) for all edges (u,v) ∈ Ef 

 Action: 

  h(u) = 1 + min{h(v)| (u,v) ∈ Ef} 
 
 Note that h(u) never decreases for any vertex u 





An Important Property 
For any active vertex u, either a PUSH or a RELABEL 
operation must be applicable 
 
 Why? 
 If PUSH operation is not applicable, then for all residual 

edges (u,v) ∈ Ef, h(u) <  h(v) + 1 
 Note that h(u) cannot be > than h(v) + 1 by defn. of h 

 So h(u) ≤ h(v) 
 But then a RELABEL operation is applicable to u 

 
 



Generic Preflow-Push Algorithm 





Example 
 



6 

0  0 

0 

0 0  
16/16 

0/12 

0/20 
0/

10
 

0/
7 

0/4 13/13 
0/14 

6 

0  0 

0 

0 1  
16/16 

0/12 

0/20 

0/
10

 

0/
7 

0/4 13/13 
0/14 

RELABEL(u) 

  

  16 
12 

20 

10
 

7 

4 13 

14 

u 

v 

w 

x 

  

  16 
12 

20 

10
 

7 

4 13 

14 

Residual Graph Initial Preflow 



6 

1  0 

0 

0 1  
16/16 

0/12 

0/20 
0/

10
 

0/
7 

0/4 13/13 
0/14 

6 

1  0 

0 

0 1  
16/16 

12/12 

0/20 

0/
10

 

0/
7 

0/4 13/13 
0/14 

RELABEL(v) 

PUSH(u,w) 

  

  16 
12 

20 

10
 

7 

4 13 

14 

  

  16 
12 

20 

10
 

7 

4 13 

14 



6 

1  0 

0 

0 1  
16/16 

12/12 

0/20 
0/

10
 

0/
7 

0/4 13/13 
13/14 

PUSH(v,x) 

RELABEL(w) 

6 

1  0 

0 

1 1  
16/16 

12/12 

0/20 

0/
10

 

0/
7 

0/4 13/13 
13/14 

  

  16 
12 

20 

10
 

7 

4 13 

1 

13 

  

  16 
12 

20 

10
 

7 

4 13 

1 

13 



PUSH(w, t) 

6 

1  0 

0 

1 1  
16/16 

12/12 

12/20 
0/

10
 

0/
7 

0/4 13/13 
13/14 

  

  16 
12 

8 

10
 

7 

4 13 

1 

13 

12 

RELABEL(u) 

6 

1  0 

0 

1 2  
16/16 

12/12 

12/20 

0/
10

 

0/
7 

0/4 13/13 
13/14 

  

  16 
12 

8 

10
 

7 

4 13 

1 

13 

12 



PUSH(u,v) 

6 

1  0 

0 

1 2  
16/16 

12/12 

12/20 
4/

10
 

0/
7 

0/4 13/13 
13/14 

  

  16 
12 

8 

6 7 

4 13 

1 

13 

4 12 

6 

1  1 

0 

1 2 
16/16 

12/12 

12/20 

4/
10

 

0/
7 

0/4 13/13 
13/14 

RELABEL(x) 

  

  16 
12 

8 

6 7 

4 13 

1 

13 

4 

12 



6 

1  1 

0 

1 2  
16/16 

12/12 

12/20 

4/
10

 

0/
7 

4/4 13/13 
13/14 

PUSH(x, t) 

  

  16 
12 

8 

6 7 

4 13 

1 

13 

4 12 

6 

2  1 

0 

1 2  
16/16 

12/12 

12/20 

4/
10

 

0/
7 

4/4 13/13 
13/14 

RELABEL(v) 

  

  16 
12 

8 

6 7 

4 13 

1 

13 

4 12 



PUSH(v,x) 

6 

2 1 

0 

1 2  
16/16 

12/12 

12/20 
4/

10
 

0/
7 

4/4 13/13 
14/14 

6 

2  2 

0 

1 2  
16/16 

12/12 

12/20 

4/
10

 

0/
7 

4/4 13/13 
14/14 

RELABEL(x) 

  

  16 
12 

8 

6 7 

4 13 14 

4 12 

  

  16 
12 

8 

6 7 

4 13 14 

4 12 



PUSH(x,w) 

6 

2  2 

0 

1 2  
16/16 

12/12 

12/20 
4/

10
 

7/
7 

4/4 13/13 
14/14 

6 

2  2 

0 

1 2  
16/16 

12/12 

19/20 

4/
10

 

7/
7 

4/4 13/13 
14/14 

PUSH(w,t) 

  

  16 
12 

8 

6 7 

4 13 14 

4 12 

  

  16 
12 

1 

6 7 

4 13 14 

4 19 



6 

3  2 

0 

1 2  
16/16 

12/12 

19/20 
4/

10
 

7/
7 

4/4 13/13 
14/14 

RELABEL(v) 

  

  16 
12 

1 

6 7 

4 13 14 

4 19 

  

  16 
12 

1 

9 7 

4 13 14 

1 19 6 

3  2 

0 

1 2  
16/16 

12/12 

19/20 

1/
10

 

7/
7 

4/4 13/13 
14/14 

PUSH(v,u) 



6 

3  4 

0 

1 2  
16/16 

12/12 

19/20 
1/

10
 

7/
7 

4/4 13/13 
14/14 

RELABEL(x) 

  

  16 
12 

1 

9 7 

4 13 14 

1 19 

PUSH(x,v) 

6 

3  4 

0 

1 2  
16/16 

12/12 

19/20 

1/
10

 

7/
7 

4/4 13/13 
11/14 

  

  16 
12 

1 

9 7 

4 13 11 

1 19 

3 



6 

3  4 

0 

1 4  
16/16 

12/12 

19/20 
1/

10
 

7/
7 

4/4 13/13 
11/14 

RELABEL(u) 

  

  16 
12 

1 

9 7 

4 13 11 

1 19 

3 

PUSH(u,v) 

6 

3  4 

0 

1 4  
16/16 

12/12 

19/20 

4/
10

 

7/
7 

4/4 13/13 
11/14 

  

  16 
12 

1 

6 7 

4 13 11 

4 19 

3 



6 

5  4 

0 

1 4  
16/16 

12/12 

19/20 
4/

10
 

7/
7 

4/4 13/13 
11/14 

RELABEL(v) 

  

  16 
12 

1 

6 7 

4 13 11 

4 19 

3 

PUSH(v,u) 

6 

5  4 

0 

1 4  
16/16 

12/12 

19/20 

0/
10

 

7/
7 

4/4 13/13 
11/14 

  

  16 
12 

1 

10
 

7 

4 13 11 

19 

3 



6 

5  4 

0 

1 6  
16/16 

12/12 

19/20 
0/

10
 

7/
7 

4/4 13/13 
11/14 

RELABEL(u) 

  

  16 
12 

1 

10
 

7 

4 13 11 

19 

3 

PUSH(u,v) 

6 

5  4 

0 

1 6  
16/16 

12/12 

19/20 

4/
10

 

7/
7 

4/4 13/13 
11/14 

  

  16 
12 

1 

6 7 

4 13 11 

4 19 

3 



RELABEL(x) 

6 

5  6 

0 

1 6  
16/16 

12/12 

19/20 

4/
10

 

7/
7 

4/4 13/13 
14/14 

  

  16 
12 

1 

6 7 

4 13 14 

4 19 

PUSH(u,x) 

6 

5  4 

0 

1 6  
16/16 

12/12 

19/20 

4/
10

 

7/
7 

4/4 13/13 
14/14 

  

  16 
12 

1 

6 7 

4 13 14 

4 19 



PUSH(x,v) 

6 

5  6 

0 

1 6  
16/16 

12/12 

19/20 
4/

10
 

7/
7 

4/4 13/13 
11/14 

  

  16 
12 

1 

6 7 

4 13 11 

4 19 

3 

RELABEL(v) 

6 

7  6 

0 

1 6  
16/16 

12/12 

19/20 

4/
10

 

7/
7 

4/4 13/13 
11/14 

  

  16 
12 

1 

6 7 

4 13 11 

4 19 

3 



6 

7 3 

0 

1 6  
16/16 

12/12 

19/20 

4/
10

 

7/
7 

4/4 7/13 
11/14 

PUSH(v,s) 

No active node, so stop 
Maximum flow |f| = 23 



Proof of Correctness (Outline) 
 Claim 1: Vertex heights never decrease 
 PUSH does not change h, and RELABEL only increases it 

 Claim 2: PUSH(u,v) and RELABEL(u) maintain the 
properties of the height function 
 PUSH(u,v) pushes flow along (u,v) ∈ Ef, so there may be 

two possibilities: 
 It may add the edge (v,u) to Ef. Since PUSH(u,v) occurred, so 

h(u) = h(v) + 1 before the push. PUSH does not change h. So 
h(v) = h(u) – 1 < h(u) + 1 after the push, which satisfies the 
height function property for the edge (v,u) 

 It may remove the edge (u,v) from Ef. Then the constraint does 
not apply to (u,v) anyway (as height function properties apply 
only for edges in Ef) 



 RELABEL(u) increases h(u) 
 Outgoing edges from u in Gf: Just before relabel, h(u) ≤  h(v) 

for any edge (u,v) ∈ Ef. Relabel increases h(u) to 1 + 
minimum of the h(v)’s. So h(u) ≤ h(v) + 1 for any edge (u,v) 
∈ Ef. This satisfies the height function property. 

 Incoming edges to u in Gf: For any edge (w,u) ∈ Ef, just 
before RELABEL, h(w) ≤ h(u) + 1 (as the height function 
was satisfied before the operation). So just after RELABEL, 
h(w) < h(u) + 1 trivially as h(u) is increased. 

 



 Claim 3: For a preflow f, there is no path from s to t in 
the residual graph Gf 
 Can show by contradiction 
 Assume that such a path p exists. By the property of the 

height function, for any edge (u,v) ∈ Ef , h(u) ≤ h(v) + 1. 
Applying this to successive vertices of the path p, it is easy  to 
show that h(s) ≤ h(t) + k, where k is the length of the path. 
But that means h(s) cannot be |V|, as h(t) = 0 and k < |V|. 
This is  a contradiction. 
 



 Claim 4: PUSH operations maintains the properties of a 
preflow 
 Since PUSH increases flow from u to v by df(u,v) = 

min(e(u), cf(u,v)) amount, it cannot make e(u) negative or 
exceed the capacity c(u,v). So the preflow f after the 
PUSH satisfies the capacity constraint and the flow 
constraint. It obviously satisfies the skew symmetry 
constraint (see pseudocode). So if f is a preflow before the 
PUSH, it remains a preflow after the PUSH 



Theorem: If the algorithm terminates, the preflow f at the 
end is a maximum flow. 
Proof Outline: 
 Initial f is a preflow. 
 RELABEL operations do not affect flow, so a preflow remains 

a preflow 
 PUSH operations  also maintain preflows (Claim 4) 
 Termination means for any vertx in V – {s,t}, PUSH and 

RELABEL are not applicable, which implies all vertices in V – 
{s,t} must have excess 0. So it is a flow, and it will not change 
(as no more PUSH and RELABEL can be done) 

 We know that there is no path from s to t in Gf (Claim 3) 
 So there is no augmenting path in the residual graph, so by 

max-flow min-cut theorem, f is a maximum flow. 
 Are we done with correctness proof? 



 No. We have proved “If ” it terminates, f is a maximum 
flow 

 We have not proved that it “does” terminate 
 What if there is always one or more vertices with excess  

> 0, and an infinite sequence of PUSH and RELABEL 
operations occur? 

 So we have to prove that the algorithm  terminates 
 We can prove termination by showing that the number of 

PUSH and the number of RELABEL operations are 
bounded 



 We will omit this proof, will just note that the following 
can be proved: 
 At any time t during the execution of the algorithm, h(u) ≤ 

2|V| – 1 
 Then, the number of RELABEL operations is bounded  by 

(2|V| – 1)(|V| – 2) < 2|V|2 

 Number of saturating pushes is < 2|V||E| 
 Number of nonsaturating pushes is < 4|V|2(|V| + |E|) 
 Therefore time complexity = O(|V|2E) 
 Can implement each PUSH and RELABEL in O(1) time 

 



 Note that the algorithm we presented is “generic” in the 
sense that it can apply PUSH and RELABELs in any 
order 

 There are different implementations that apply these 
operations in different specific orders to get better 
complexity 
 Relabel-to-front 
 FIFO 
 Highest-label 
 ….. 


	Network Flow
	Network Flow
	The Maximum Flow Problem
	Slide Number 4
	Example 
	Algorithms for Maximum Flow
	Ford-Fulkerson Method
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Example
	Slide Number 12
	Slide Number 13
	Residual Network
	Slide Number 15
	Example
	Slide Number 17
	Slide Number 18
	Ford-Fulkerson Algorithm
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Proof of Correctness
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Time Complexity
	Slide Number 31
	Edmonds-Karp Algorithm
	What if there are multiple sources and sink?
	Slide Number 34
	Application: Maximum Cardinality Bipartite Matching
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Application: Edge Connectivity
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Preflow-Push Method
	Slide Number 45
	An Example Preflow
	Basic Idea
	Initial Preflow
	Slide Number 49
	Slide Number 50
	The Height Function
	Slide Number 52
	PUSH Operation
	Slide Number 54
	RELABEL Operation
	Slide Number 56
	An Important Property
	Generic Preflow-Push Algorithm
	Slide Number 59
	Example
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Proof of Correctness (Outline)
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84

