Third Short Test

- **1.** Let Q_1, Q_2 be two decision problems that admit a polynomial-time reduction $Q_1 \leq Q_2$. If P \neq NP, which of the following statements is true?
 - (A) If Q_1 is NP-Complete, then Q_2 is NP-Complete.
 - (B) If Q_2 is NP-Complete, then Q_1 is NP-Complete.
 - (C) If $Q_1 \in P$, then Q_2 cannot be NP-Complete.
 - **(D)** If $Q_2 \in P$, then Q_1 cannot be NP-Complete.
- **2.** Let Q_1, Q_2 be computational problems in NP such that the same (polynomial-time) reduction map f can be used to establish both $Q_1 \leq Q_2$ and $Q_2 \leq Q_1$. For example, the map $(G = (V, E), k) \mapsto (\overline{G} = (V, \overline{E}), k)$ works for both the reductions CLIQUE \leq INDEPENDENT-SET and INDEPENDENT-SET \leq CLIQUE. Which of the following statements is true for such a map f in general?
 - (A) f is a one-to-one correspondence.
 - (B) f may or may not be a one-to-one correspondence.
 - (C) f is not a one-to-one correspondence.
 - (D) The existence of f implies that both Q_1 and Q_2 are NP-Complete.
- Solution Let EMC (resp. OMC) denote the problem of deciding whether the maximum clique of an undirected graph consists of an even (resp. odd) number of vertices. Given a graph G, add a new vertex, and connect the new vertex to all the existing vertices. This construction works for both EMC \leq OMC and OMC \leq EMC, but is not bijective, because f(f(G)) contains two more vertices than G, and so $f \circ f$ cannot be the identity map.

In order to see that (D) is false, consider the two problems in P.

IS-MAX (resp. IS-MIN): Given an array A of integers and an integer k, decide whether k is the maximum (resp. minimum) element of A.

Look at the reduction $(A, k) \mapsto (-A, -k)$.

- 3. Which of the following statements is necessarily true? Here *n* is the input size.
 - (A) If SAT has an $O(n^t)$ -time algorithm (t constant), then every problem in NP has an $O(n^t)$ -time algorithm.
 - (B) If SAT has an $O(2^n)$ -time algorithm, then every problem in NP has an $O(2^n)$ -time algorithm.
 - (C) If SAT has an $O(n^{\log n})$ -time algorithm, then every problem in NP has an $O(n^{\log n})$ -time algorithm.
 - (D) If SAT has an $n^{O(\log n)}$ -time algorithm, then every problem in NP has an $n^{O(\log n)}$ -time algorithm.
- Solution SAT in NP-Complete. Take any $Q \in NP$. There is a reduction $Q \leq SAT$. If *I* is an instance of size *n* for *Q*, the reduction generates an instance for SAT of size $O(n^k)$ for some positive constant *k*. If the SAT-solver runs in f(n) time, it runs in $f(n^k)$ time on the converted instance. We may have k > 1, so only (D) is necessarily true. For example, $O((n^k)^t) = O(n^{tk})$ is not $O(n^t)$ for k > 1, whereas $(n^k)^{O(\log n^k)} = n^{k^2 O(\log n)} = n^{O(\log n)}$, since *k* is a constant.
- 4. Let Q_1, Q_2 be two NP-Complete problems. Assume that the input spaces for both the problems are the same. Define the following problems.

 $Q_1 \lor Q_2$: Given *I*, decide whether $I \in Accept(Q_1)$ or $I \in Accept(Q_2)$.

 $Q_1 \land Q_2$: Given *I*, decide whether $I \in Accept(Q_1)$ and $I \in Accept(Q_2)$.

Which of the following statements is true? Assume $P \neq NP$.

- (A) Neither $Q_1 \lor Q_2$ nor $Q_1 \land Q_2$ may be NP-Complete.
- (B) $Q_1 \vee Q_2$ must be NP-Complete, but $Q_1 \wedge Q_2$ may or may not be NP-Complete.
- (C) $Q_1 \wedge Q_2$ must be NP-Complete, but $Q_1 \vee Q_2$ may or may not be NP-Complete.
- **(D)** Both $Q_1 \lor Q_2$ and $Q_1 \land Q_2$ must be NP-Complete.
- Solution Let *G* be a weighted undirected graph with both positive and negative weights allowed (you may restrict the weights to integer values). Then LONGEST-PATH and SHORTEST-PATH are essentially the same problem, and both are NP-Complete. Define Q_1 as the problem to decide whether a graph *G* has a path of length > k, and Q_2 as the problem to decide whether *G* has a path of length $\leq k$. Then Accept $(Q_1 \lor Q_2)$ is the set of all graphs (actually all (G,k) pairs), whereas Accept $(Q_1 \land Q_2)$ is \emptyset . Both these problems are trivially in P.

- **5.** Suppose that there exists an algorithm that, given a Boolean formula $\phi(x_1, x_2, \dots, x_n)$ in $n \ge 1$ variables, decides in polynomial time whether $\phi(0, x_2, x_3, \dots, x_n)$ is satisfiable. Which of the following statements is **not** true?
 - (A) SAT can be solved in polynomial time
 - (B) SAT is not NP-Complete
 - (\mathbf{C}) $\mathbf{P} = \mathbf{NP}$
 - (**D**) NP = coNP

Solution Let $\phi' = \phi(\bar{x}_1, x_2, x_3, \dots, x_n)$. Call the given algorithm twice, once on ϕ , and a second time on ϕ' . This gives a polynomial-time algorithm for SAT.

SAT is already proved to be NP-Complete. That proof does not become invalid in any case. Indeed, if P = NP, then every problem in this (common) class is NP-Complete.

6. Under the assumption that $P \neq NP$, which of the following polynomial-time reductions is **not** possible?

- (A) CNFSAT \leq DNFSAT
- (B) DNFSAT \leq CNFSAT
- (C) SORTING \leq VORONOI-DIAGRAM
- **(D)** HAM-PATH \leq HALTING-PROBLEM
- Solution CNFSAT is NP-Complete, whereas DNFSAT is in P, so a reduction CNFSAT \leq DNFSAT implies DNFSAT is NP-complete, and so P = NP. (B) is true because CNFSAT is NP-Complete. (C) is true because we have seen reductions SORTING \leq CONVEX-HULL and CONVEX-HULL \leq VORONOI-DIAGRAM. Since SAT is NP-Complete, we have HAM-PATH \leq SAT, and we have also seen a reduction SAT \leq HALTING-PROBLEM, so (D) is true.
- 7. Let NOTCONSTANT denote the problem of deciding whether a given Boolean formula is neither a tautology nor a contradiction. Under the assumptions that $P \neq NP$ and $NP \neq coNP$, which of the following statements is true?
 - (A) NOTCONSTANT is in P
 - (B) NOTCONSTANT is not in NP
 - (C) NOTCONSTANT is not in coNP
 - **(D)** NOTCONSTANT is in NP \cap coNP

Solution Work out that NONCONSTANT is NP-Complete. In (C) and (D), use the result that if any NP-Complete problem is in coNP, then NP = coNP.

- 8. Let SAME denote the problem of deciding whether two Boolean formulas ϕ_1 and ϕ_2 in the same variables evaluate to the same value for each truth assignment of the variables. Under the assumptions that $P \neq NP$ and $NP \neq coNP$, which of the following statements is true?
 - (A) SAME is in P
 - (B) SAME is in NP but is not NP-complete
 - (C) SAME is NP-Complete
 - **(D)** SAME is coNP-complete

Solution Clearly, SAME is in coNP. Then use the reduction TAUTOLOGY \leq SAME taking $\phi(x_1, x_2, ..., x_n)$ to $(\phi, (x_1 \lor \overline{x}_1) \land (x_2 \lor \overline{x}_2) \land \cdots \land (x_n \lor \overline{x}_n))$. Also use the fact if any coNP-Complete problem is in NP, then NP = coNP.

- **9.** Let *G* be an undirected graph with *n* vertices. Under the assumption that $P \neq NP$, which of the following problems is NP-Complete?
 - (A) Decide whether G contains a clique of size $\leq n/5$.
 - (B) Decide whether G contains a clique of size $\ge n/5$.
 - (C) Decide whether G contains a clique of size $\ge n-5$.
 - (D) Decide whether G contains a clique of size ≥ 5 .
- Solution (A): Every graph contains a 1-clique.

(B): Reduction from CLIQUE. Let (G,k) be an instance of CLIQUE with |V(G)| = n. If $n \leq 5k$, add 5k - n isolated vertices. If n > 5k, add $\frac{n-5k}{4}$ vertices, and connect the new vertices to one another and to all of the *n* vertices of *G*.

(C): Exhaustively search over all subsets of V of size n-5. There are $\binom{n}{n-5} = \binom{n}{5}$ of them.

(D): Exhaustively search over all subsets of V of size 5.

In this exercise, the best strategy is to find the correct answer by elimination.

- 10. Let EVC denote the problem of deciding whether an undirected graph G = (V, E) has a vertex cover U with |U| even. Under the assumptions that $P \neq NP$ and $NP \neq coNP$, which of the following statements is true?
 - (A) EVC is in P
 - (**B**) EVC is NP-complete
 - (C) EVC is coNP-complete
 - (D) EVC is neither in NP nor in coNP

Solution Let G = (V, E). If |V| is even, take U = V. Otherwise take $U = V \setminus \{u\}$ for any $u \in V$.