Algorithms - II

Third Short Test

1. Let Q_{1}, Q_{2} be two decision problems that admit a polynomial-time reduction $Q_{1} \leqslant Q_{2}$. If $\mathrm{P} \neq \mathrm{NP}$, which of the following statements is true?
(A) If Q_{1} is NP-Complete, then Q_{2} is NP-Complete.
(B) If Q_{2} is NP-Complete, then Q_{1} is NP-Complete.
(C) If $Q_{1} \in \mathrm{P}$, then Q_{2} cannot be NP-Complete.
(D) If $Q_{2} \in \mathrm{P}$, then Q_{1} cannot be NP-Complete.
2. Let Q_{1}, Q_{2} be computational problems in NP such that the same (polynomial-time) reduction map f can be used to establish both $Q_{1} \leqslant Q_{2}$ and $Q_{2} \leqslant Q_{1}$. For example, the map $(G=(V, E), k) \mapsto(\bar{G}=(V, \bar{E}), k)$ works for both the reductions CLIQUE \leqslant INDEPENDENT-SET and INDEPENDENT-SET \leqslant CLIQUE. Which of the following statements is true for such a map f in general?
(A) f is a one-to-one correspondence.
(B) f may or may not be a one-to-one correspondence.
(C) f is not a one-to-one correspondence.
(D) The existence of f implies that both Q_{1} and Q_{2} are NP-Complete.

Solution Let EMC (resp. OMC) denote the problem of deciding whether the maximum clique of an undirected graph consists of an even (resp. odd) number of vertices. Given a graph G, add a new vertex, and connect the new vertex to all the existing vertices. This construction works for both EMC $\leqslant \mathrm{OMC}$ and $\mathrm{OMC} \leqslant \mathrm{EMC}$, but is not bijective, because $f(f(G))$ contains two more vertices than G, and so $f \circ f$ cannot be the identity map.

In order to see that (D) is false, consider the two problems in P .
IS-MAX (resp. IS-MIN): Given an array A of integers and an integer k, decide whether k is the maximum (resp. minimum) element of A.
Look at the reduction $(A, k) \mapsto(-A,-k)$.
3. Which of the following statements is necessarily true? Here n is the input size.
(A) If SAT has an $\mathrm{O}\left(n^{t}\right)$-time algorithm (t constant), then every problem in NP has an $\mathrm{O}\left(n^{t}\right)$-time algorithm.
(B) If SAT has an $\mathrm{O}\left(2^{n}\right)$-time algorithm, then every problem in NP has an $\mathrm{O}\left(2^{n}\right)$-time algorithm.
(C) If SAT has an $\mathrm{O}\left(n^{\log n}\right)$-time algorithm, then every problem in NP has an $\mathrm{O}\left(n^{\log n}\right)$-time algorithm.
(D) If SAT has an $n^{\mathrm{O}(\log n)}$-time algorithm, then every problem in NP has an $n^{\mathrm{O}(\log n)}$-time algorithm.

Solution SAT in NP-Complete. Take any $Q \in$ NP. There is a reduction $Q \leqslant$ SAT. If I is an instance of size n for Q, the reduction generates an instance for SAT of size $\mathrm{O}\left(n^{k}\right)$ for some positive constant k. If the SAT-solver runs in $f(n)$ time, it runs in $f\left(n^{k}\right)$ time on the converted instance. We may have $k>1$, so only (D) is necessarily true. For example, $\mathrm{O}\left(\left(n^{k}\right)^{t}\right)=\mathrm{O}\left(n^{t k}\right)$ is not $\mathrm{O}\left(n^{t}\right)$ for $k>1$, whereas $\left(n^{k}\right)^{\mathrm{O}\left(\log n^{k}\right)}=n^{k^{2} \mathrm{O}(\log n)}=n^{\mathrm{O}(\log n)}$, since k is a constant.
4. Let Q_{1}, Q_{2} be two NP-Complete problems. Assume that the input spaces for both the problems are the same. Define the following problems.
$Q_{1} \vee Q_{2}$: Given I, decide whether $I \in \operatorname{Accept}\left(Q_{1}\right)$ or $I \in \operatorname{Accept}\left(Q_{2}\right)$.
$Q_{1} \wedge Q_{2}$: Given I, decide whether $I \in \operatorname{Accept}\left(Q_{1}\right)$ and $I \in \operatorname{Accept}\left(Q_{2}\right)$.
Which of the following statements is true? Assume $\mathrm{P} \neq \mathrm{NP}$.
(A) Neither $Q_{1} \vee Q_{2}$ nor $Q_{1} \wedge Q_{2}$ may be NP-Complete.
(B) $Q_{1} \vee Q_{2}$ must be NP-Complete, but $Q_{1} \wedge Q_{2}$ may or may not be NP-Complete.
(C) $Q_{1} \wedge Q_{2}$ must be NP-Complete, but $Q_{1} \vee Q_{2}$ may or may not be NP-Complete.
(D) Both $Q_{1} \vee Q_{2}$ and $Q_{1} \wedge Q_{2}$ must be NP-Complete.

Solution Let G be a weighted undirected graph with both positive and negative weights allowed (you may restrict the weights to integer values). Then LONGEST-PATH and SHORTEST-PATH are essentially the same problem, and both are NP-Complete. Define Q_{1} as the problem to decide whether a graph G has a path of length $>k$, and Q_{2} as the problem to decide whether G has a path of length $\leqslant k$. Then $\operatorname{Accept}\left(Q_{1} \vee Q_{2}\right)$ is the set of all graphs (actually all (G, k) pairs), whereas $\operatorname{Accept}\left(Q_{1} \wedge Q_{2}\right)$ is \emptyset. Both these problems are trivially in P.
5. Suppose that there exists an algorithm that, given a Boolean formula $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in $n \geqslant 1$ variables, decides in polynomial time whether $\phi\left(0, x_{2}, x_{3}, \ldots, x_{n}\right)$ is satisfiable. Which of the following statements is not true?
(A) SAT can be solved in polynomial time
(B) SAT is not NP-Complete
(C) $\quad \mathrm{P}=\mathrm{NP}$
(D) $\mathrm{NP}=\mathrm{coNP}$

Solution Let $\phi^{\prime}=\phi\left(\bar{x}_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$. Call the given algorithm twice, once on ϕ, and a second time on ϕ^{\prime}. This gives a polynomialtime algorithm for SAT.

SAT is already proved to be NP-Complete. That proof does not become invalid in any case. Indeed, if $\mathrm{P}=\mathrm{NP}$, then every problem in this (common) class is NP-Complete.
6. Under the assumption that $\mathrm{P} \neq \mathrm{NP}$, which of the following polynomial-time reductions is not possible?
(A) CNFSAT \leqslant DNFSAT
(B) DNFSAT \leqslant CNFSAT
(C) SORTING \leqslant VORONOI-DIAGRAM
(D) HAM-PATH \leqslant HALTING-PROBLEM

Solution CNFSAT is NP-Complete, whereas DNFSAT is in P, so a reduction CNFSAT \leqslant DNFSAT implies DNFSAT is NPcomplete, and so $\mathrm{P}=\mathrm{NP}$. (B) is true because CNFSAT is NP-Complete. (C) is true because we have seen reductions SORTING \leqslant CONVEX-HULL and CONVEX-HULL \leqslant VORONOI-DIAGRAM. Since SAT is NP-Complete, we have HAM-PATH \leqslant SAT, and we have also seen a reduction SAT \leqslant HALTING-PROBLEM, so (D) is true.
7. Let NOTCONSTANT denote the problem of deciding whether a given Boolean formula is neither a tautology nor a contradiction. Under the assumptions that $\mathrm{P} \neq \mathrm{NP}$ and $\mathrm{NP} \neq \mathrm{coNP}$, which of the following statements is true?
(A) NOTCONSTANT is in P
(B) NOTCONSTANT is not in NP
(C) NOTCONSTANT is not in coNP
(D) NOTCONSTANT is in $\mathrm{NP} \cap$ coNP

Solution Work out that NONCONSTANT is NP-Complete. In (C) and (D), use the result that if any NP-Complete problem is in coNP, then $\mathrm{NP}=\mathrm{coNP}$.
8. Let SAME denote the problem of deciding whether two Boolean formulas ϕ_{1} and ϕ_{2} in the same variables evaluate to the same value for each truth assignment of the variables. Under the assumptions that $P \neq N P$ and NP \neq coNP, which of the following statements is true?
(A) SAME is in P
(B) SAME is in NP but is not NP-complete
(C) SAME is NP-Complete
(D) SAME is coNP-complete

Solution Clearly, SAME is in coNP. Then use the reduction TAUTOLOGY \leqslant SAME taking $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $\left(\phi,\left(x_{1} \vee \bar{x}_{1}\right) \wedge\left(x_{2} \vee\right.\right.$ $\left.\left.\bar{x}_{2}\right) \wedge \cdots \wedge\left(x_{n} \vee \bar{x}_{n}\right)\right)$. Also use the fact if any coNP-Complete problem is in NP, then NP $=$ coNP.
9. Let G be an undirected graph with n vertices. Under the assumption that $\mathrm{P} \neq \mathrm{NP}$, which of the following problems is NP-Complete?
(A) Decide whether G contains a clique of size $\leqslant n / 5$.
(B) Decide whether G contains a clique of size $\geqslant n / 5$.
(C) Decide whether G contains a clique of size $\geqslant n-5$.
(D) Decide whether G contains a clique of size $\geqslant 5$.

Solution (A): Every graph contains a 1-clique.
(B): Reduction from CLIQUE. Let (G, k) be an instance of CLIQUE with $|V(G)|=n$. If $n \leqslant 5 k$, add $5 k-n$ isolated vertices. If $n>5 k$, add $\frac{n-5 k}{4}$ vertices, and connect the new vertices to one another and to all of the n vertices of G.
(C): Exhaustively search over all subsets of V of size $n-5$. There are $\binom{n}{n-5}=\binom{n}{5}$ of them.
(D): Exhaustively search over all subsets of V of size 5 .

In this exercise, the best strategy is to find the correct answer by elimination.
10. Let EVC denote the problem of deciding whether an undirected graph $G=(V, E)$ has a vertex cover U with $|U|$ even. Under the assumptions that $\mathrm{P} \neq \mathrm{NP}$ and $\mathrm{NP} \neq \mathrm{coNP}$, which of the following statements is true?
(A) EVC is in P (B) EVC is NP-complete
(C) EVC is coNP-complete
(D) EVC is neither in NP nor in coNP

Solution Let $G=(V, E)$. If $|V|$ is even, take $U=V$. Otherwise take $U=V \backslash\{u\}$ for any $u \in V$.

