CS31005 Algorithms — IT
Class Test 3

Date: 18-Nov-2020 Maximum marks: 50

Instructions

* Answer all of Q1-Q4, and only one of QS and Q6. Be brief and precise.
e If you use any algorithm/result/formula covered in the lectures/tutorials, just mention it, do not elaborate.

1. Consider the following instance of the set-cover problem, where X is the universal set, and S; are the subsets of X.

X = {1,2,3,4,5,6,7,8,9,10}, S = {3,8,9},
S = {1,4,8,10},
S3 = {2,8,9,10},
Sy = {5,6,10},
Ss = {3,7,9},
Se = {1,3,5,7,9},
S7 = {2,4,5},
Sy = {1,2,4,6}.

You run the greedy set-cover algorithm (as taught in the class) on this instance. Prove/Disprove: The algorithm
produces an optimal solution for this instance. 6]

Solution True. In the first iteration, the greedy algorithm chooses the set S¢, and updates the remaining sets as

X = {2,4,6,87 10}, S = {8},
Sy = {4,8,10},
S = {2787 10},
Sy = {6, 10}7
$7 = {274}7
Sg = {27476}.

Now, there are three contenders S3,S3,Sg. Let us see what happens if we include each of these in the cover. In each case,
only the non-empty sets that remain are shown.

S S3 Sg
X:{276}7 532{2}7 X:{4’76}7 S2:{4}7 X:{8110}7 S :{8}7
S4:{6}7 S4:{6}7 S2:{8710}7
§7= {2}7 §7= {4}7 S3= {87 10}7
Sg— {2,6}. Sg = {4,6. Su = {10},

In each case, we need to select only one more set. Thus the greedy algorithm always produces a set cover with three subsets
for this instance. On the other hand, simple size arguments reveal that X cannot be covered by only two of the given subsets.

2. Consider a Bloom Filter with 15 bits for storing positive integers, with all bits set to O initially. The filter uses
the following three hash functions to hash an integer key x: hj(x) = x mod m, hy(x) = (4x+ 3) mod m, and
h3(x) = (5x44) mod m, where m is the size of the filter.

(a) Choose four integers as follows: one integer randomly from 10 to 25, one integer randomly from 26 to 40, one
integer randomly from 41 to 55, and one integer randomly from 56 to 75. Make sure that the four integers you choose
are distinct modulo 15. Insert the integers in the bloom filter. Your answer should first show the set of integers chosen
in ascending order. Then, for each insertion, show the values of the hash functions and the bloom filter after the
insertion. Do not give any explanation or write anything else. (6)

(b) Now, find one integer x such that A (x), 2 (x),h3(x) are not all the same as for any of the four integers inserted
(that is, for each of these four integers y, at most two of the following equalities may hold: h; (x) = Ay (y), ha(x) = ha(y),
and h3(x) = h3(y)) such that searching for x will cause a false positive. Show the integer x chosen by you as a false
positive and the hash function values for it. Do not give any explanation or write anything else. “@)

3. You are given a stream of songs lasting for #1,1,,13,...,, seconds. You have two write-once devices D; and D,, each
capable of storing songs of total duration 7 seconds. When the i-th song starts, you have three options: (i) copy the

— Page 10of 3 —

song to Dy, (ii) copy the song to D,, and (iii) discard the song. The copy of a song to a device is allowed only when
there is enough memory left in that device. Assume that the individual song durations #; are known to you beforehand,

n
and these durations satisfy #; < T for all i, and Zti < 2T. Your goal is to maximize the total copy time in the two
i=1
output devices together. To that effect, you run the following greedy algorithm. Derive a tight approximation ratio of
the algorithm. Prove that the approximation ratio is tight. 6+4)

fori=1,2,3,...,n (in that order) {
If Dy can accommodate the i-th song, copy the i-th song to Dy,
else if D, can accommodate the i-th song, copy the i-th song to D»,
else discard the i-th song, and continue.

Solution If all the songs can be copied to Dy and D,, we have obtained an optimal solution. So assume that some song(s) can be
copied to neither D nor D5. Let the k-th song be the first such song. Under the assumption #; < T, this implies that both D,
and D store some songs at the time when the k-th song comes. This implies that the first k — 1 songs could not be copied to
D alone because of its capacity constraint, that is, the total length of the songs copied so far is already > 7. Since the two

devices can store a maximum of 27" seconds of songs, the approximation ratio is > %

In order to see that this approximation ratio is tight, start with any £ > 0. Take T > % Consider the four songs of durations

1, %, %,T — 1. The greedy algorithm copies the first two songs to D and the third song to D;, and discards the last

song. All the songs can be copied to the devices (we have 1+ (7T —1) = g + % = T), so the approximation ratio is

T4+l _ 1,1 <1
=5+ 7 S 3+E

4. You have only two weeks left to solve the pending assignments of Algorithms—II. Let there be n such assignments with
the i-th assignment demanding time #;. Assume that you can solve all the assignments in one week, but since you have
other courses too, you would like to distribute the Algorithms—II assignments in the available two weeks as evenly as

Yo=Y
acA beB
Prove that this problem cannot have any polynomial-time approximation algorithm (unless P = NP). @)

possible. That is, you want to partition the assignments into two subsets A, B such that is minimized.

Solution Assume that there exists a polynomial-time p-approximation algorithm .o for the given problem. Using 7, we can solve
the partition problem in polynomial time as follows. Let S = {aj,as,...,a,} be an instance of the partition problem
with Y | @; = 2T. We pass S to 7. If the partition problem on the given instance has a solution, we have OPT = 0
on the converted instance. Since .2 is a p-approximation algorithm, it outputs a partition A, B of S with load imbalance
< p x OPT = 0. Since the load imbalance cannot be negative, it must be equal to 0. On the other hand, if the partition
problem has no solution for the given instance, OPT > 0, so &/ returns a suboptimal solution with load imbalance > 0 as
well.

Answer either Q5 or Q6. Do not answer both Q5 and Q6. In case you do, we will grade only the first one
we see, and ignore the other.

5. Consider an experiment in which two people are each asked to choose n numbers one by one independently and
randomly from a very large range of positive integers. The numbers chosen need not be distinct, so a person can
choose the same number more than once also. At the end, we want to find out if they have chosen the same collection
of numbers (the same set of distinct numbers, each repeated the same number of times) or not. You are asked to design
a Monte Carlo algorithm that outputs YES if they have chosen the same set of numbers, NO otherwise. The NO answer
must always be correct, but the YES answer may be wrong with a probability of at most 1/2. Your algorithm should
run in O(n) time and O(n) space.

Your solution must use hashing in some form. You do not need to specify any hash function explicitly, just explain
how your algorithm will work using hashing.

Your answer should have:

(a) The pseudocode for the algorithm. t))

Solution Let A and B be two hash tables of size 2n each, initialized to 0.
Let /1 be a random hash function.
For each number x of person 1, set A[/(x)
h

Alh(x)]+ 1.
For each number y of person 2, set B[h(y)] = B[h(y)] + 1.

| =
| =

— Page20of3 —

Fori=1to2n
If A[i] # Bli], return NO.
Return YES.

[You can also do with one hash table with increment for Person 1 and decrement for Person 2. Check for all entries = 0 at
the end]

(b) A proof that the error probability is at most 1/2. (State any assumptions you make, if any.) @)

Solution If the two sets of numbers are different, there exists at least one number p chosen by Person 1 such that p is chosen a different
number of times by Person 2 (including 0 times when Person 2 has not chosen p). Suppose i(p) = g. Since the answer is
YES, A[g] = B]g]. Since p is chosen a different number of times by Person 2, there must exist at least one number r # p that
hashes to the same index g to make A[g] = B[g]. Now, the expected number of numbers hashing to any one entry of the table
is n/(2n) = 1/2. Thus, the probability that a number different than p hashes to the same index as p is less than 1/2. Hence,
with probability at least 1/2, no other number hashes to the same index as p. In that case, there is no chance of A[g] = Blg],
as the difference in the number of occurrences of p in the two sets cannot be canceled out by any other number. Hence, the
difference will be detected with probability at least 1,/2. Hence the probability of a wrong YES answer (the difference is not
detected) is at most 1/2.

6. Consider the following variation of the traveling salesperson problem on a complete undirected weighted graph of
n nodes with positive edge weights: The salesperson starts from a particular city x, and travels to a particular city y
going through every other city exactly once. There is no requirement of coming back to city x. The goal is to find a
path such that the maximum edge weight on the path is the minimum among all such paths. You are asked to design a
branch-and-bound algorithm for this problem with DFS order of generating the state-space tree.

(a) Show the structure of the solution (one sentence only). 2)
Solution (x =Xx|,X2,X3,...,X,—1,X, = y), where each x; is a city in the path.

(b) Show the bounding function you will use to prune the state-space tree. The bounding function will be used as
follows at a node u: Before generating any child v of u, u will apply the bounding function on the state represented
by v; v will be generated if and only if the bounding function returns true, otherwise v will not be generated. Your
bounding function must prune nodes leading to both infeasible solutions, and feasible solutions that are not optimal.
Write the bounding function clearly describing any notations/terms that you use. Do not explain the working of the
bounding function. 7

Solution Suppose you are applying the bounding function to a node corresponding to the partial solution (x = xy,x2,x3,...,%;).

Pruning infeasible solutions: Prune if x; is a city already in the path, or if x; = y but all other cities are not covered.
If (x; = x;) for some 1 < j <i—1 ORif (x; =y and i # n), then return false.

Pruning feasible but non-optimal solutions: If F(s;) + vipuer(i + 1) > Vipper, then return false, where F(s;) =
max{w(x;,xjy1) | 1 < j<i—1} is the maximum weighted edge in the partial path seen so far. Let W = min{w(x;,x;) | x; ¢
{x1,x2,...,x;}} be the minimum-weight edge from x; to nodes not in the partial path. We take vj,er(i+1) = W — F(s;)
if W > F(s;) (this will be minimum increase in max weight edge), 0 otherwise (the current max-weight edge stays as max-
weight). Finally, v;per is the max weight of any edge in the graph initially. As each full solution S is found, update vy per
as the minimum of current value of vypper and the weight of the maximum-weight edge in S.

(¢) Consider the following graph, with the numbers inside the nodes indicating the IDs of the nodes, and the numbers
on the edges showing the weights of the edges. Show the state-space tree generated by applying the branch-and-bound
algorithm to this graph, with node 2 as the starting city, node 5 as the final destination city, and neighboring nodes
explored in increasing order of their IDs wherever required (strictly follow this order). You should only show the nodes
generated (strictly as per the method of generating nodes mentioned above). Do not show any node not generated. (6)

— Page 30f 3 —

