
CS31005 Algorithms – II

Class Test 2

Date: 02-Nov-2020 Maximum marks: 50

Instructions

• Answer all the questions. Be brief and precise.

• If you use any algorithm/result/formula covered in the lectures or the tutorials, just mention it, do not elaborate.

1. Explain the working of Graham’s scan for computing the upper hull of the following set of eight points. (10)
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Solution The points in sorted order of x-coordinates are P5,P4,P7,P1,P3,P8,P6,P2. The following operations are performed on a stack.

P5 : Push P5 [Init]

P4 : Push P4 [Stack has only one element]

P7 : Push P7 [Right turn]

P1 : Pop P7 [Wrong turn]

Push P1 [Right turn]

P3 : Push P3 [Right turn]

P8 : Pop P3 [Wrong turn]

Pop P1 [Wrong turn]

Push P8 [Right turn]

P6 : Push P6 [Right turn]

P2 : Pop P6 [Wrong turn]

Push P2 [Right turn]

The final content of the stack from bottom to top is P5,P4,P8,P2.

2. A chain of non-intersecting line segments is called progressive if the x-coordinate always increases during the traversal

of the chain from the leftmost point to the rightmost point. A simple (but not necessarily convex) polygon is called

progressive if it consists of two progressive chains. The following figure demonstrates this concept.

Progressive polygon Non−progressive polygon

Progressive chain Non−progressive chain
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You are given a set S of n > 3 points. Your task is to construct a progressive polygon P having its only vertices at all

of the given points in S. You may assume that the points in S are in general position.

(a) Prove/Disprove: For every S, the polygon P can be constructed uniquely. (4)

Solution False. See the following counterexample.

(b) Propose an O(n logn)-time algorithm to construct P from S. (6)

Solution Locate the leftmost point P and the rightmost point Q (these are unique by the assumption of general position). Let U be

those of the given points that lie above PQ, and V those that lie below PQ. Sort U and V by an O(n logn)-time algorithm.

Start at P, follow the points in the sorted U , go to Q, follow the points in the sorted V in the reverse order, and finally come

back to P.

3. There are n cell-phone towers in the plane. The towers are located at the points (xi,yi) for i= 1,2,3, . . . ,n. Around each

tower, there is an interference zone of a fixed radius r (the same for all the towers). Assume that the interference zones

do not overlap with each other. Two towers can communicate without interference if the line segment joining them

does not intersect with the interference zone of any other tower. Your task is to determine all the towers with which the

first tower (located at (x1,y1)) can communicate without interference. The following figure gives an example. Propose

an O(n logn)-time algorithm to solve this problem. Clearly mention the data structures that your algorithm uses. Also

justify that your algorithm actually achieves the given running time. (10)

Solution (Sketch) Use a ray-sweep algorithm. The ray emanates from the position (x1,y1) of the first tower.

Active towers: Those for which the interference zones intersect with the ray. These are kept sorted with respect to their

distances from (x1,y1).

Events:

– Enter circle: Insert the tower in the list of active towers.

– Leave circle: Delete the tower from the list of active towers.

– Center of circle: Report the tower as supporting interference-free communication if and only if it is the closest active

tower from (x1,y1).

The list of active towers should support arbitrary insertion and deletion, and should therefore be implemented as a height-

balanced tree.
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The event queue may be implemented as a heap. There are 3(n− 1) events. All can be initially put in the heap, and a

makeheap operation is performed on the heap. The heap ordering is with respect to the angles with the horizontal.

4. You are given two arrays A = (a1,a2,a3, . . . ,am) and B = (b1,b2,b3, . . . ,bn) of positive integers. Your task is to find

out whether there exist a non-empty subset I of {1,2,3, . . . ,m} and a non-empty subset J of {1,2,3, . . . ,n} such that

∑i∈I ai = ∑ j∈J b j. Prove that this problem is NP-Complete. (10)

Solution Let us call the given problem EQUAL-SUM. A specification of I and J is a succinct certificate for EQUAL-SUM, implying

that the problem is in NP. In order to prove its NP-Hardness, we make a reduction from the SUBSET-SUM problem. Let

S = (s1,s2, . . . ,sk) and the target sum t constitute an instance for SUBSET-SUM. Here, all si and t are positive integers. Take

A = S and B = {t}.

5. You are given an undirected graph G = (V,E) and a positive integer k. You want to determine whether there exist

k or fewer edges in E such that the removal of these edges from E makes G bipartite. Prove that this problem is

NP-Complete. (Hint: Use the max-cut problem for the reduction.) (10)

Solution The problem is clearly in NP, because the list of edges to remove from E in order to make it bipartite is a succinct certificate

for the problem. It is easy to verify whether the list contains 6 k edges, and their removal from G leaves a bipartite graph.

For NP-Hardness, we make a reduction from MAX-CUT. Let (G,r) be an instance for MAX-CUT. If m is the number of

edges in G, generate the instance (G,k) of the given problem, where k = m− r. G has a cut of size s > r if and only if the

removal of the remaining m− s edges makes G bipartite. The number of edges removed is m− s 6 m− r = k.
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