
CS29003 Algorithms Laboratory

Assignment No: 7

Last date of submission: 12–March–2019

Binary Search Trees

You are given two node-disjoint binary search trees S and T . Each of these trees consists of n nodes. The

two trees are structurally different, but store exactly the same set of keys. Let us call S the source tree, and

T the target tree. Your task is to convert S to (a tree structurally identical to) T , by making a sequence of

rotation operations only. Your algorithm should run in O(n) time. In particular, you are allowed to carry out

at most O(n) rotation operations. Moreover, it is forbidden to add any extra space to the tree nodes. Using

an additional O(n) space, totally external to the trees, is however granted.

31
15

25 34
38

48
60

56
34

25
31

15

38
48

60
56

38
31

34
48

60
5625

1556
60

48
38

31
15 34

25

15
25

31
38

34 48
60

56

15
25

31

15
25

31

Make the source tree skew

Make the destination tree skew

15
25

31

34
38

48

56
60

34
38

48
56

60

38
48

56
60

34

15
25

31
34

48
56

60
38

34
25

15 31
48

56
60

38
34

25

31
15

48
56

60
38

15
25

31
34

48
56

60
38

The above figure illustrates an algorithm for solving this problem. Any BST can be converted to a totally

right-skew tree using a sequence of right-rotate operations. This process is illustrated for both the source

and the target trees in the figure. After this skewing operation on these two trees, they become essentially

the same tree with different sets of nodes. Let HS (not needed actually) and HT (to be needed) denote the

histories of rotation operations performed on the two trees in order to right-skew them.

The rotation operation is reversible. This means that if we reverse the history HT on the right-skew target

tree, we get back the original T . Likewise, reversing the history HS on the right-skew source tree gives back

the original S. We however want S to be converted to a tree structurally identical to T (not S), so we need to

apply a reversal of the history HT on S. But S and T are composed of different nodes, so HT is not directly

applicable to S. After the skewing operations, the trees have structurally become the same. That is, we can

work out the correspondence of the nodes of T with the nodes of S. If we apply this correspondence to the

history HT , we get a sequence H ′

S of rotations pertinent to the source tree. If we reverse the derived history

H ′

S on the right-skew source tree, it gets converted to a tree structurally identical to the original target tree T .

Part 1: Construct the input trees using the given black box

A black box BB7 is provided for the construction of the input trees S and T . For using this black box,

download the header file BB7.h and the appropriate object file BB7.o, to your working directory. Include the

following line after your usual include directives.

#include "BB7.h"

The header file defines the BST data type as follows. Notice that there is no parent pointer in a BST node.

— Page 1 of 4 —

typedef struct _node {

int key;

struct _node *L;

struct _node *R;

} BSTnode;

typedef BSTnode *BST;

Let n be the number of nodes in S or T (to be input by the user). At the beginning of your main() function,

include the following lines.

BST S, T;

registerme(n); /* Mandatory in this assignment */

S = getsourcetree(); /* The source tree */

T = gettargettree(); /* The target tree */

You are now ready to start the actual assignment. Compile your code as:

gcc/g++ myprog.c/myprog.cpp BB7.o

Part 2: BST functions

Write a function preorder() to print the preorder listing of the keys of a BST. Unlike general binary trees,

the tree structure of a BST is uniquely identified by its preorder listing. So this function helps you to verify

the correctness of your BSTs. If you find useful, you may additionally write an inorder() function to

print BST keys in sorted order.

The main primitives to be used in this assignment are rotations. Write two functions with the following

prototypes to perform left and right rotations at specified nodes.

BST lrotate (BST);

BST rrotate (BST);

Using the notations of the following figure, the call rrotate(u) should return v, whereas lrotate(v)

should return u. Here, u,v, p are to be taken as BST node pointers.

v

u

p p

u

v

Right rotation Left rotation Adding a dummy root

Dummy root

Actual root

−

8

L M

R L

M R
BST

Each rotation changes the root of the subtree at the position of rotation (the root changes from u to v for

right rotation, and from v to u for left rotation, according to the above figure). Let p be the parent of the

pre-rotation root of the subtree. In addition to adjusting a few pointers of the subtree, one needs to change

the appropriate child pointer of the parent node p. This, in turn, implies that you must know the pointer p

before you make the rotation. In this assignment, a right or left rotation is applied always to the right child

of p. Noting that you do not have a provision of parent pointers, you should make the calls like this.

p -> R = rrotate(p -> R);

p -> R = lrotate(p -> R);

The root of the entire tree does not have a parent. This asymmetry can be handled by adding a dummy root

node which stores the key −∞, and which has the actual root as its only child (the right child). The black

box does not add the dummy nodes to S and T . It is your responsibility to augment the returned trees with

the extra nodes. We need the dummy roots in Part 3 (rotations) and Part 4 (finding node correspondences).

— Page 2 of 4 —

Part 3: Make the trees right skew

Write a function rightskew to covert a BST to a right-skew BST (on the same keys). Initialize p to the

dummy root, and q to its right child (the actual root). So long as the left subtree of q is not empty, apply

right rotations at q. Then, advance both p and q by one step (follow their right-child pointers), and repeat.

We need to remember the history of rotations for the target tree. If a right rotation is made at q, its parent

p is appended to the history. For the source tree in the figure on Page 1, the rotations are made at the nodes

48,38,31,31,38,60. This list is not sorted with respect to the key values. However, the history should

consist of the sequence of the parent pointers, that is, the pointers to the nodes −∞,−∞,−∞,15,31,48. This

is sorted with respect to the key values. For the target tree of the figure, the history should store the sequence

of pointers to the nodes storing −∞,−∞,25,34.

Part 4: Find the node correspondences

Write a function findcorr(S,T,HT) to convert the history HT of rotations applied to T in Part 3 to the

history H ′

S applicable to S. Since S,T,HT are sorted, this can be done in O(n) time by making a single pass

through the two trees S,T (now sorted linked lists with respect to the right-child pointers) and HT .

Part 5: Reverse the skewing process

Write a function unskew that, given a history (and its size), performs the relevant left-rotate operations in

the reverse sequence as stored in the history (that is, from end to beginning).

The main() function

• Read n (the count of nodes in S or T) from the user.

• Get two random BSTs S,T on the same key values by making appropriate BB7 calls (see Part 1). Print

the trees (the preorder listings of their keys).

• Make rightskew calls to convert S and T to right-skew trees. During the skewing of T , the history

should also be stored in HT (an array of pointers of type BST). Print the right-skew trees.

• Obtain the derived history H ′

S by calling findcorr.

• Convert the right-skew T to the original T by calling unskew with respect to HT . Also, convert the

right-skew S to a BST structurally identical to the original T , by applying unskew with respect to the

derived history H ′

S. Print the final trees.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 3 of 4 —

Sample output

n = 50

*** You are now registered

+++ Initial trees

Source : 165 137 114 106 128 147 222 212 168 196 181 211 271 269 245 229

228 243 257 287 275 351 290 321 306 339 337 344 350 519 443 369

363 357 399 382 411 413 429 492 455 467 478 490 508 551 549 534

575 560

Target : 168 137 106 128 114 165 147 413 290 243 222 181 211 196 212 228

229 287 275 269 245 257 271 339 337 306 321 357 351 344 350 382

363 369 411 399 519 492 478 467 443 429 455 490 508 534 575 551

549 560

+++ Right-skewing the trees

Source : 106 114 128 137 147 165 168 181 196 211 212 222 228 229 243 245

257 269 271 275 287 290 306 321 337 339 344 350 351 357 363 369

382 399 411 413 429 443 455 467 478 490 492 508 519 534 549 551

560 575

Number of rotations = 42

Target : 106 114 128 137 147 165 168 181 196 211 212 222 228 229 243 245

257 269 271 275 287 290 306 321 337 339 344 350 351 357 363 369

382 399 411 413 429 443 455 467 478 490 492 508 519 534 549 551

560 575

Number of rotations = 45

+++ Finding node correspondence

+++ Reversing the skewing process

Source : 168 137 106 128 114 165 147 413 290 243 222 181 211 196 212 228

229 287 275 269 245 257 271 339 337 306 321 357 351 344 350 382

363 369 411 399 519 492 478 467 443 429 455 490 508 534 575 551

549 560

Target : 168 137 106 128 114 165 147 413 290 243 222 181 211 196 212 228

229 287 275 269 245 257 271 339 337 306 321 357 351 344 350 382

363 369 411 399 519 492 478 467 443 429 455 490 508 534 575 551

549 560

— Page 4 of 4 —

