
CS29003 Algorithms Laboratory

Assignment No: 6

Last date of submission: 05–March–2019

Heaps and Priority Queues

Come to Foobarland Highway again. The long straight highway is serviced by n mobile-phone towers. The

i-th tower has a range Ii = [li,ri] with li < ri, for i = 0,1,2, . . . ,n−1. Let L = min
i
(li) and R = max

i
(ri). The

highway stretches from L to R. Assume that each li,ri is an integer. Assume also that the union of the tower

ranges [li,ri] is the entire interval [L,R], that is, each point in [L,R] is covered by at least one tower.

The communication minister of Foobarland notices that even if some towers are made non-operational, the

remaining functional towers continue to cover the entire interval [L,R]. In order to minimize the maintenance

cost, he wants to pick a minimum number of towers which cover the entire [L,R]. This minimization problem

can be solved by a greedy algorithm. An interval [li,ri] is called active at a point x ∈ [L,R] if li 6 x < ri, that

is, if the interval starts at or to the left of x and ends strictly to the right of x. The algorithm described below

chooses a sequence of active intervals. Since O(n) intervals are to be added to the output, and Steps II(a)

and II(b) can run in O(n) time, this algorithm takes O(n2) running time.

I. Set x = L.

II. While x < R, repeat:

(a) Find all the intervals active at x.

(b) Choose an active interval I = [l,r] with the largest right endpoint r.

(c) Output I as an interval chosen, and set x = r.

The figure below illustrates the working of this algorithm. The left part shows an arbitrary minimal (but not

minimum) cover, whereas the right side shows the greedy (and so minimum) cover.

Foobarland Highway Foobarland Highway

This assignment deals with an O(n logn)-time O(n)-space implementation of this algorithm. Let E denote

the array of 2n endpoints of the given intervals, sorted in the ascending order (so E[0] = L and E[2n−1] =R).

Also, maintain a max-priority queue Q of active intervals. The heap ordering in Q is with respect to the right

endpoints of the active intervals. Only at the points of E, the queue Q changes. Run the following steps.

1. Let E store the 2n endpoints of the given intervals. Each element of E consists of an endpoint e, the

number i of the interval of which e is an endpoint, and optionally the information whether e is the

left or the right endpoint of the interval Ii. Sort E in the ascending order of the endpoints. After this

sorting, denote E[k] = (ek, ik) for k = 0,1,2, . . . ,2n−1.

2. Output the interval Ii0 . Let Q consist only of the interval Ii0 . Initialize x = ri0 , and k = 0.

3. While x < R, repeat: /* Interval [L,x] is so far covered */

Increment k. /* Handle the next endpoint */

If ek is the left endpoint of the interval Iik , then:

Insert Iik to Q. /* Iik now becomes active. */

else:

Delete Iik from Q. /* Iik now becomes inactive */

If ek = x, then: /* If the last interval chosen for the output is deleted */

Choose from Q the interval I j with the maximum right endpoint.

Output the interval I j, and set x = r j.

— Page 1 of 4 —

Part 1: Managing E

The algorithm should run in O(n logn) time, so write a function to merge sort E. You may also implement

E as a min-priority queue with only heapify, makeheap and deletemin (insert is not needed for E).

Part 2: Managing Q

Implementing Q as a max-heap is somewhat involved. It is initialized to a single-element Q (so makeheap

is not needed). It should also support insert. The delete from Q is, in general, not deletemax. The interval

deleted from Q is indeed the one with the smallest right endpoint among the active intervals, so this operation

is actually a deletemin from a max-heap. A minmax-heap is a solution. But since O(n) space is allowed (E

already uses this much space), we can take a simpler approach.

Each element of Q stores the endpoints of the interval [li,ri] along with the number i of the interval. We

maintain an additional array idx[0 . . .n−1]. If Ii is not an active interval (at some point of time), we should

have idx[i] = −1. If Ii is active, it resides in Q at some index l, and we should have idx[i] = l. Whenever

two elements in Q are swapped, the corresponding idx entries must also be appropriately modified. More

precisely, if the active interval Ii at index l1 is swapped with the active interval I j at index l2 (so l2 is either

the parent or a child of l1), we should, after the swap, set idx[i] = l2 and idx[j] = l1.

With this additional information, the deletion of Iik from Q is carried out as follows. Find the index l = idx[ik]
where Iik resides in Q. If l is the last element of Q, simply decrement the size of Q. Otherwise, copy the last

element of Q to index l (and update the idx entry of this interval), decrement the size of Q, and move this

newly positioned element of Q up the heap so long as necessary (the minimum was deleted, so the value at

index l in Q cannot be decreased by the copy).

Write the functions insertQ and deleteQ to implement the required operations on Q.

Part 3: Find a minimum cover

Write a function mincover to implement the three-step algorithm described earlier. The data structures E

and Q should exist only inside this function (but not in main() or globally).

The main() function

• Read n and the intervals [li,ri] for i = 0,1,2, . . . ,n−1 from the user.

• The total coverage [L,R] of the intervals can be computed in O(n) time. But for this assignment, you

may assume that L = 0 and R = 999. Your program should handle n 6 256.

• Call mincover to compute and print a minimum cover of [L,R].

Notes

• Convince yourself that this algorithm runs in O(n logn) time.

• Like merge sort, heap sort is another worst-case O(n logn)-time sorting algorithm. You may heap sort

E using a max-heap. But if E is maintained as a min-heap, an explicit sorting of E is not necessary.

The management of E illustrates a situation where sorting and using a priority queue offer equivalent

benefits. The management of Q is not quite like that.

• Q can also be maintained as a min-heap. If so, each deletion is the natural deletemin operation from

Q. But then, finding the next interval I j for output is doing a findmax operation in a min-heap, that is,

we always need to keep track of the maximum in a min-heap. This is certainly doable, but we promote

Q be designed as a max-heap for exposing you to the indexing approach (see the next point).

• This assignment illustrates a situation where we always do deletemin from a max-heap. The indexing

approach is, however, equally applicable to arbitrary deletions. If the value being deleted is larger than

the last element in the heap, then a smaller value replaces the deleted value, and the potential violation

of heap ordering is to be readjusted by moving the smaller value down the tree (as in heapify).

• The algorithm can be easily adapted to the situations where endpoints are repeated, and where the

input intervals do not cover the entire [L,R] (so your output should maintain the total coverage).

— Page 2 of 4 —

40,80

45,7020,65

20

12 33

257

7 12 20 25

10,55

40,80

45,7020,65

20

12 33

257 19

50,75

257 12 2019

(b) Insertion of the interval [50,75]

10,55

40,80

20,65

20

12

257

25 337 12 20

19

50,75

33

45,70

19

10,55

40,80

20,65

20

12

25

2512 20

19

50,75

19

−1

7

33

45,70

33

40,80

20

25

19

50,75

33

45,70

20,65

12

2512 2019 33

(c) Deletion of the interval [10,55]

15,60

15,60 15,60

15,6015,60

(a) Intervals active at 50

1

2 3

4 5

4 2 1 5 3

33

1

2 3

4 5 6

4 2 6 1 5 3

33

1

2 3

4 5 6

4 2 3 1 5 6

1

2 3

4 5

1

2 3

4 5

4 3 1 5 22 3 1 5 4

— Page 3 of 4 —

Sample output

n = 50

408 495 479 553 592 657 195 248 832 921 312 364 58 134 755 826

214 297 0 73 131 194 28 117 687 768 520 590 190 289 356 429

727 792 301 400 967 999 484 571 613 707 542 617 853 934 744 805

136 218 362 453 346 412 751 843 642 717 99 153 662 730 876 971

749 820 395 481 898 970 799 869 899 950 862 922 917 993 269 350

812 905 890 977 376 438 714 797 532 630 129 225 828 913 652 723

669 757 223 308

+++ Finding minimum cover

Added interval 9 [0, 73]

Added interval 6 [58,134]

Added interval 45 [129,225]

Added interval 49 [223,308]

Added interval 17 [301,400]

Added interval 33 [395,481]

Added interval 1 [479,553]

Added interval 44 [532,630]

Added interval 20 [613,707]

Added interval 12 [687,768]

Added interval 27 [751,843]

Added interval 4 [832,921]

Added interval 38 [917,993]

Added interval 18 [967,999]

Total number of intervals = 14

Submit a single C/C++ source file. Do not use global/static variables.

— Page 4 of 4 —

