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Greedy Algorithms

Greedy algorithms are often used to obtain near-optimal solutions to many optimization problems that appear

to be very difficult to solve. An exhaustive search requires exponential time. We use several greedy heuristics

to solve the problem in polynomial time. These greedy heuristics perhaps do not guarantee optimal solutions,

but we are happy with solutions that are close to optimal.

Ms. Kunde from Greedland wants to buy n items from foreign countries. At the beginning of the story, the

prices of these items are p0, p1, p2, . . . , pn−1 (positive floating-point numbers). The Customs Department

of Greedland does not allow anybody to buy multiple foreign items in a month, so Ms. Kunde plans to

buy her n items in n consecutive months (starting from the current month). The economy of Greedland is

very poor, and all foreign prices suffer from appreciation rates. For the items of Ms. Kunde’s choice, the

appreciation rates are r0,r1,r2, . . . ,rn−1 (floating-point numbers > 1), that is, in Month j, the cost of Item i

is pir
j

i . Ms. Kunde wants to find the best possible sequence of buying her n items so that her total payment

is as small as possible. In particular, if she buys Item i in Month j i, her total payment equals

C =C( j0, j1, j2, . . . , jn−1) = p0r
j0

0 + p1r
j1

1 + p2r
j2

2 + · · ·+ pn−1r
jn−1

n−1 .

Here, ( j0, j1, j2, . . . , jn−1) is a permutation of (0,1,2, . . . ,n− 1), and the cost C is to be minimized over all

of the n! permutations of (0,1,2, . . . ,n− 1). Clearly, a naive exhaustive search cannot be used except for

only very small values of n. Greedy algorithms help Ms. Kunde in this context. If all her items are from

the same foreign country so that r0 = r1 = r2 = · · · = rn−1, then the greedy strategy costliest first clearly

works. Another special case is that all the initial item prices are equal, that is, p0 = p1 = p2 = · · · = pn−1.

In this case, the greedy strategy largest appreciation rate first works. In the general cases, neither of these

strategies is guaranteed to give optimal solutions.

Part 1: Greedy strategy costliest first

Implement a function grdsearch1() that buys the costliest item in each month. In Month j, buy the item i

if its current cost pir
j

i is maximum among all items remaining to be bought. Here, j should be chosen in the

order j = 0,1,2, . . . ,n−1.

Part 2: Greedy strategy cheapest last

Choose the item to buy in Month j in the sequence j = n− 1,n− 2, . . . ,2,1,0. For each j, choose that

item i for which the cost pir
j

i is minimum among all the items that are not yet decided to be bought later (in

months j+1 through n−1). Write a function grdsearch2() to implement this greedy strategy.

Part 3: Greedy strategy maximum price increase first

A decision on which item to buy in Month j can also be taken as follows, for j = 0,1,2, . . . ,n−2. Calculate

the price hikes for the items remaining to be bought as pi(r
j+1

i − r
j

i ). Choose that item for which the price

hike is largest. In Month n− 1, there is only one item remaining to be bought, so buy it. Write a function

grdsearch3() to implement this part.

Part 4: Exhaustive search with pruning

Now that you have several greedy heuristics in your bag, the obvious question is how good they are. To

quantify the goodness of a greedy heuristic, a well-known method is to determine its approximation ratio

ρ . One uses mathematical tools to prove that if OPT is the optimal solution of a minimization problem, the

greedy algorithm does not supply solutions GRD poorer than ρ ×OPT. In such proofs, we do not need to

know the value of OPT; it instead suffices to bound the ratio as GRD
OPT

6 ρ . It is not clear to us how such a

bound can be established for the current problem.
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We follow a different approach here. We compute the optimal solution. The exhaustive search algorithm

minimizes Ms. Kunde’s payment over all of the n! allowed buying sequences. Such an exhaustive search can

supply the output in reasonable time, only for small values of n (like n 6 12 for the current problem). There

are many ways in which all permutations of 0,1,2, . . . ,n−1 can be generated. The following pseudocode is

one such method. It initializes the permutation array P = (0,1,2, . . . ,n−1) outside the outermost call. The

outermost call is on k = 0.

genpermutations ( int P[], int n, int k )

{

int i;

if (k == n) {

A permutation is generated, process it, and return.

}

for (i=k; i<n; ++i) {

Swap P[k] with P[i].

Make a recursive call genpermutations(P,n,k+1).

Swap P[k] with P[i].

}

}

A pruning heuristic can practically cut down the total number of calls of this function. The function keeps

on processing each permutation as soon as it is fully generated. Maintain the minimum of the payments over

all permutations generated so far. The recursive call in the above code does not alter the elements of P at

indices 0,1,2, . . . ,k. If the buying of the first k+1 items as suggested by P already incurs a cost larger than

(or equal to) the minimum payment discovered so far, there is no point exploring further down the recursion

tree. This strategy may prune many branches of the tree, leading to noticeable practical speedup.

Implement a function exhsearch() to implement this exhaustive search with the pruning heuristic. Only

for small values of n, the function would actually make the search. Otherwise, it would simply notify that n

is too large to be comfortably handled.

The main() function

• The user supplies n, the initial prices p0, p1, p2, . . . , pn−1, and the appreciation rates r0,r1,r2, . . . ,rn−1.

• One by one, call the functions implementing the three greedy algorithms described above. Report the

solutions and the corresponding payment amounts of Ms. Kunde.

• Call exhsearch() to compute and print an optimal solution (provided that n 6 12).

Sample output

n = 10

Initial prices

14 189 154 37 103 73 111 13 72 126

Appreciation rates

2.316 1.536 1.563 1.436 1.979 1.928 1.933 2.339 2.176 1.220

+++ Greedy search 1

[ 0 1 189.000000] [ 4 8 1614.239836] [ 8 3 669.017138]

[ 1 2 240.702000] [ 5 5 1944.724153] [ 9 9 754.412753]

[ 2 6 414.750279] [ 6 0 2160.525348]

[ 3 4 798.315584] [ 7 7 4979.146504]

--- Total cost = 13764.833595

+++ Greedy search 2

[ 0 6 111.000000] [ 4 5 1008.674353] [ 8 3 669.017138]

[ 1 4 203.837000] [ 5 0 932.869321] [ 9 9 754.412753]

[ 2 8 340.918272] [ 6 7 2128.750109]

[ 3 1 684.913066] [ 7 2 3509.405618]

--- Total cost = 10343.797630

+++ Greedy search 3

[ 0 6 111.000000] [ 4 1 1052.026469] [ 8 3 669.017138]

[ 1 4 203.837000] [ 5 0 932.869321] [ 9 9 754.412753]

[ 2 8 340.918272] [ 6 7 2128.750109]

[ 3 5 523.171345] [ 7 2 3509.405618]

--- Total cost = 10225.408025
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+++ Exhaustive search

[ 0 6 111.000000] [ 4 0 402.793317] [ 8 3 669.017138]

[ 1 4 203.837000] [ 5 7 910.111205] [ 9 9 754.412753]

[ 2 8 340.918272] [ 6 1 2482.041841]

[ 3 5 523.171345] [ 7 2 3509.405618]

--- Total cost = 9906.708489

------------------------------------------------------------------------------------------

n = 32

Initial prices

187 96 21 11 48 51 101 125 32 167

127 91 131 151 150 71 22 135 32 89

111 52 27 99 195 96 67 86 135 122

137 17

Appreciation rates

1.135 1.476 1.644 1.873 1.313 1.941 1.645 2.024 1.967 1.946

2.002 1.294 1.254 1.542 1.697 2.379 1.190 1.176 1.619 2.361

1.364 1.775 2.268 1.522 2.157 1.773 2.181 2.152 1.730 1.418

1.986 2.460

+++ Greedy search 1

[ 0 24 195.000000] [11 5 75136.518067] [22 23 1020369.686972]

[ 1 9 324.982000] [12 8 107350.061445] [23 1 743459.739588]

[ 2 30 540.354852] [13 28 167854.546557] [24 29 532830.861290]

[ 3 19 1171.326497] [14 25 291201.448855] [25 20 260424.738531]

[ 4 15 2274.239074] [15 14 418137.283862] [26 11 74017.187192]

[ 5 7 4245.829536] [16 21 504867.089960] [27 4 74883.966754]

[ 6 27 8541.852213] [17 6 477685.119475] [28 12 74063.173586]

[ 7 10 16370.133946] [18 3 885263.743736] [29 17 14864.356030]

[ 8 26 34302.054082] [19 13 565692.014163] [30 0 8350.595602]

[ 9 31 56087.345382] [20 18 489876.891513] [31 16 4834.799672]

[10 22 97228.652388] [21 2 718054.440111]

--- Total cost = 7730500.032929

+++ Greedy search 2

[ 0 24 195.000000] [11 5 75136.518067] [22 23 1020369.686972]

[ 1 9 324.982000] [12 8 107350.061445] [23 1 743459.739588]

[ 2 19 496.114569] [13 25 164242.215936] [24 29 532830.861290]

[ 3 15 955.964302] [14 28 290388.365543] [25 20 260424.738531]

[ 4 7 2097.741865] [15 14 418137.283862] [26 11 74017.187192]

[ 5 27 3969.262181] [16 21 504867.089960] [27 4 74883.966754]

[ 6 30 8406.128646] [17 3 472644.817798] [28 12 74063.173586]

[ 7 26 15727.672665] [18 6 785792.021536] [29 17 14864.356030]

[ 8 10 32773.008159] [19 13 565692.014163] [30 0 8350.595602]

[ 9 31 56087.345382] [20 18 489876.891513] [31 16 4834.799672]

[10 22 97228.652388] [21 2 718054.440111]

--- Total cost = 7618542.697307

+++ Greedy search 3

[ 0 24 195.000000] [11 5 75136.518067] [22 23 1020369.686972]

[ 1 9 324.982000] [12 8 107350.061445] [23 1 743459.739588]

[ 2 19 496.114569] [13 25 164242.215936] [24 29 532830.861290]

[ 3 15 955.964302] [14 28 290388.365543] [25 20 260424.738531]

[ 4 7 2097.741865] [15 14 418137.283862] [26 11 74017.187192]

[ 5 27 3969.262181] [16 21 504867.089960] [27 4 74883.966754]

[ 6 26 7211.220846] [17 3 472644.817798] [28 12 74063.173586]

[ 7 30 16694.571492] [18 6 785792.021536] [29 17 14864.356030]

[ 8 31 22799.733895] [19 13 565692.014163] [30 0 8350.595602]

[ 9 10 65611.562334] [20 18 489876.891513] [31 16 4834.799672]

[10 22 97228.652388] [21 2 718054.440111]

--- Total cost = 7617865.631022

+++ Exhaustive search

*** n is too large, skipping exhaustive search

Submit a single C/C++ source file. Do not use global/static variables.

— Page 3 of 3 —


