
CS29003 Algorithms Laboratory

Assignment No: 2

Last date of submission: 22–January–2019

Divide-and-Conquer Algorithms

In this assignment, you solve the 4-peg Tower-of-Hanoi problem. The puzzle was introduced by François

Édouard Anatole Lucas in 1883. The 3-peg version is well understood, and its time complexity is easily

provable. The 4-peg version eluded mathematicians for over a century. In 1941, J.S. Frame and B.M. Stewart

independently proposed a particular way of solving the 4-peg puzzle, which is popularly known as the

Frame–Stewart algorithm (see below). In 1994, Paul Stockmeyer calculated an approximate closed-form

expression for the optimal number of moves made by the Frame–Stewart algorithm. Very recently, Roberto

Demontis (December 2018) proved that the Frame–Stewart algorithm is indeed optimal.

There are four pegs A,B,C,D (numbered as 0,1,2,3). Initially, n disks of diameters 1,2,3, . . . ,n are stacked

on Peg A in the sorted order (the smallest disk at the top, and the largest disk at the bottom). The three other

pegs are initially empty. Your task is to transfer the n disks from Peg A to Peg B taking help from the other

two pegs, using a sequence of moves. Each move transfers a single disk d from Peg p to Peg q (p 6= q),

such that the following two conditions hold just before the movement: (i) Disk d must be sitting at the top

of Peg p, and (ii) Disk d is not allowed to be larger than the disk (if any) sitting on the top of Peg q.

If only three pegs are allowed, we know that the best (minimum) number of moves is T3(n) = 2n −1, and a

straightforward divide-and-conquer algorithm solves the 3-peg puzzle using exactly these many moves. If

we are allowed to use a fourth peg, the Frame–Stewart algorithm is used, which involves the following steps

(also see the figure on the next page).

1. If n 6 3, solve the problem directly.

2. Fix a value of k in the range 1 6 k 6 n.

3. Keep the k largest disks on Peg A, and transfer the smallest n− k disks from Peg A to Peg D.

4. Transfer the largest k disks from Peg A to Peg B without disturbing the smallest n− k disks already

sitting on Peg D. Since a larger disk can never be put on the top of a smaller disk, Peg D is unusable

in this part, that is, we solve the 3-peg Tower-of-Hanoi problem on k disks.

5. Transfer the smallest n−k disks from Peg D to Peg B without disturbing the largest k disks on Peg B.

In this step, all the four pegs can be used.

Steps 3 and 5 are solved recursively, so the running time of this algorithm satisfies

T4(n) = T4(n− k)+T3(k)+T4(n− k) = 2T4(n− k)+2k −1.

This performance depends on the choice of k. Consider a recursive call for the transfer of Disks i through

j. This involves m = j− i+1 disks. Initially (in the outermost call), we have i = 1, j = n, and m = n. The

parameter k is (usually) chosen as a function of m.

Part 0: Step 4 of the Frame–Stewart algorithm needs a solution of the 3-peg Tower-of-Hanoi problem.

Write a function ToH3(i,j,p,q,r) to transfer Disks i through j from Peg p to Peg q using a third Peg r.

The remaining three parts implement the Frame–Stewart algorithm for different choices of k.

Part 1: Write a function ToH41(i,j,p,q,r,s) to transfer Disks i through j from Peg p to Peg q using the

two other pegs r and s. Here, you take k = ⌊m/2⌋ (where m = j− i+1 as defined above). This is a natural

choice of breaking the problem into two equal halves, but this choice turns out to be quite poor.

Part 2: Write a function ToH42(i,j,p,q,r,s,k) to transfer Disks i through j from Peg p to Peg q using

the two other pegs r and s. Here, we use a fixed value of k independent of the size m = j − i+ 1 of the

subproblem posed to the recursive invocation. If m 6 k, solve the problem using the 3-peg Tower-of-Hanoi

algorithm. Otherwise, follow the Frame–Stewart algorithm.

— Page 1 of 3 —

A B C D

A B C D

A B C D

A B C D

n−k

k

Initial Configuration

Step 2: After movement of the larger part using three pegs

Step 3: After second recursive call on the smaller part

Step 1: After first recursive call on the smaller part

The best value of k is determined beforehand as follows. Unfolding the recurrence for T4(n) gives the

following calculations. For simplicity, we assume that n = uk.

T4(n) ≈ 2T (n− k)+2k

≈ 22T (n−2k)+(2+1)×2k

≈ 23T (n−3k)+(22 +2+1)×2k

· · ·
≈ 2u−1T (k)+(2u−2 + · · ·+22 +2+1)×2k

≈ (2u−1 +2u−2 + · · ·+22 +2+1)×2k

≈ 2u+k

= 2
n
k
+k.

The quantity n
k
+k is minimized for k =

√
n, and correspondingly T4(n)≈ 22

√
n. All invocations of ToH4 uses

k = ⌊√n⌋, so this value can be precomputed before the outermost call and passed to all recursive invocations.

Part 3: It turns out that the optimal choice for k is {
√

2m} for a recursive call on m disks, where {x} is the

integer nearest to x. As shown by Stockmeyer, this choice of k leads to T4(n) ≈
√

n2
√

2n. Write a function

ToH43(i,j,p,q,r,s) to implement this optimal version, where i, j, p,q,r,s (and m) are as explained above.

— Page 2 of 3 —

Using the Black Box

In your program, do not maintain the pegs or perform any disk movement. This is carried out by the blackbox

BB2 (provided as a binary file for both gcc and g++). You should only ask the blackbox to move Disk d

from Peg p to Peg q by the call makemove(d,p,q). Notice that d is an integer in the range 1 6 d 6 n (a disk

is numbered by its diameter). Moreover, the pegs A,B,C,D are numbered 0,1,2,3, respectively, so p and q

must be integers in the range 0,1,2,3 with p 6= q.

At the beginning of your program, insert the following external function declarations.

extern void registerme (int);

extern void startpart (int);

extern void endpart (int);

extern void makemove (int , int , int);

extern void showpegs ();

At the beginning of your main() function, initialize the blackbox by the value of n (to be read from the

user). This is to be done by making the following blackbox call. Use n 6 60.

registerme(n);

Solve Parts 1–3 by writing the following lines in your main() function. Recall that Part 2 requires a fixed

value of k computed outside the call of ToH42. You do not have to print anything or keep a count of the disk

movements. When you end each part, BB2 tells you the number of disk movements made by your function

for that part. You should only issue makemove() directives to effect the disk movements. The rest of the

book-keeping (well, disk-keeping) is the duty of BB2.

startpart(1); ToH41(1,n,0,1,2,3); endpart(1);

startpart(2); ToH42(1,n,0,1,2,3,k); endpart(2);

startpart(3); ToH43(1,n,0,1,2,3); endpart(3);

In order to help you (for example, during debugging) the blackbox shows the contents of the four pegs when

you make the following call. In the final code that you submit, suppress all these diagnostic calls, since these

make the output verbose (unmanageably so if you print the pegs after every disk movement).

showpegs();

Finally, this is how you compile your code. Since you need math library functions like sqrt() and round(),

compile using the -lm flag.

gcc mycode.c BB2.o -lm

g++ mycode.cpp BB2.o -lm

Sample output

n = 30

+++ You are now ready to start Part 1

--- Checking your solution for Part 1

You have solved the puzzle. Congrats...

Total number of disk movements made = 33153

+++ You are now ready to start Part 2

--- Checking your solution for Part 2

You have solved the puzzle. Congrats...

Total number of disk movements made = 1953

+++ You are now ready to start Part 3

--- Checking your solution for Part 3

You have solved the puzzle. Congrats...

Total number of disk movements made = 1025

Submit a single C/C++ source file. Do not use global/static variables.

— Page 3 of 3 —

