
CS21003 Algorithms–I, Spring 2017–2018

Class Test 1

08–February–2018 CSE 107/119/120, 07:00pm–08:00pm Maximum marks: 20

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. Catalan numbers C(n) are given by the formula C(n) =
1

n+1

(

2n

n

)

for all integers n > 1.

(a) Find a simple closed-form expression for C(n+1)/C(n) for all n > 1. (3)

Solution We have

C(n+1)/C(n) =

(

n+1

n+2

)(

2n+2

n+1

)

/

(

2n

n

)

=

(

n+1

n+2

)(

(2n+2)(2n+1) · · ·(n+2)

(n+1)!

)(

n!

(2n)(2n−1) · · ·(n+1)

)

=

(

n+1

n+2

)(

(2n+2)(2n+1)

(n+1)2

)

=
4n+2

n+2
.

(b) Prove that C(n) = O(4n). (3)

Solution For all n > 1, we have
C(n+1)

C(n)
6

4n+8

n+2
= 4. It follows that

C(n) =

(

C(n)

C(n−1)

)(

C(n−1)

c(n−2)

)

· · ·

(

C(2)

C(1)

)

C(1)6 4n−1 =

(

1

4

)

4n.

— Page 1 of 3 —

(c) Prove that C(n) = Ω((4− ε)n) for any constant ε satisfying 0 < ε < 3. (4)

Solution
C(n+1)

C(n)
=

4n+2

n+2
> 4− ε for all n > n0, where n0 =

⌈

6−2ε

ε

⌉

. For all n > n0, we then have

C(n) =

(

C(n)

C(n−1)

)(

C(n−1)

c(n−2)

)

· · ·

(

C(n0 +1)

C(n0)

)

C(n0)> (4− ε)n−n0C(n0) =

(

C(n0)

(4− ε)n0

)

4n.

Since ε and n0 are constant, the result follows.

2. Let n be a positive integer. The partition number p(n) is the count of ways in which n can be expressed as

a sum of positive integers. For example, 5 can be written in seven ways as 1+1+1+1+1, 2+1+1+1,

2+2+1, 3+1+1, 3+2, 4+1, and 5. Therefore p(5) = 7. Notice that permuting the summands does not

give a new way of expressing n. For example, 2+ 2+ 1, 2+ 1+ 2 and 1+ 2+ 2 are considered the same

partition of 5. By convention, p(0) = 1 (0 is the empty sum of zero number of summands). In this exercise,

you use dynamic programming to compute p(n) efficiently.

(a) In order to avoid duplicate permutations of the summands in a given partition, we choose the summands

in non-increasing order. For example, if 3 is chosen as a summand, the remaining summands are allowed to

be 3, 2, and 1 only. Keeping this in mind, we build a two-dimensional table T such that T [i][j] is meant for

storing the count of partitions of i, in which the largest summand allowed is j. Make a recursive formulation

of T [i][j]. Also supply the initial conditions. (4)

Solution If i = 0, there are no more explorations of choosing summands. If 1 6 j 6 i, there are two options: we choose

all summands < j, or we choose j as a summand. Finally, if i+1 6 j 6 n, the maximum summand allowed is

i. These imply the following.

Initial conditions: T [0][j] = 1 for all j = 0,1,2, . . . ,n,

Recursive relation 1: T [i][j] = T [i][j−1]+T [i− j][j] for 1 6 j 6 i,

Recursive relation 2: T [i][j] = T [i][i]
(

or T [i][j−1]
)

for i+1 6 j 6 n.

— Page 2 of 3 —

(b) Propose a bottom-up approach of filling the table T . Do not use memoization. Mention how you finally

obtain p(n) from T . (4 + 1)

Solution The following pseudocode describes the algorithm. The recursion formulas in Part (a) indicate that we can fill

T in the row-major order.

1. For j = 0,1,2, . . . ,n, set T [0][j] = 1.

2. For i = 1,2,3, . . . ,n, repeat:

(a) For j = 1,2,3, . . . , i, set T [i][j] = T [i][j−1]+T [i− j][j].

(b) For j = i+1, i+2, . . . ,n, set T [i][j] = T [i][i]
(

or T [i][j] = T [i][j−1]
)

.

In the count p(n), the sum is n, and the maximum allowed summand is n. So T [n][n] is returned as p(n).

(c) What is the running time of your algorithm of Part (b)? (1)

Solution Θ(n2) (the running time is dominated by the time for building T which has (n+1)2 entries, each of which can

be computed in Θ(1) time).

— Page 3 of 3 —

FOR ROUGH WORK

