
CS29003 Algorithms Laboratory

Assignment No: 8

Last date of submission: 20–March–2018

Let G = (V,E) be an undirected graph with |V |= n and |E|= m. As usual, we take V = {0,1,2, . . . ,n−1}.

Consider two subsets V1,V2 ⊆V of vertices with |V1|= n1 and |V2|= n2. The distance between two vertices

u,v ∈ V , denoted d(u,v), is the length of the shortest u,v-path if u and v are connected, or ∞ otherwise.

Define the distance between V1 and V2 as

d(V1,V2) = min{d(u,v) | u ∈V1, v ∈V2}.

If V1 ∩V2 6= /0, then d(V1,V2) = 0. This is an uninteresting case, so assume that V1 ∩V2 = /0. This implies

that n1 + n2 6 n. Renumbering the vertices, we can always arrange that V1 = {0,1,2, . . . ,n1 − 1} and

V2 = {n−n2,n−n2 +1, . . . ,n−2,n−1}. In what follows, we assume that V1 and V2 are these sets.

Part 1: Graph Construction

Represent G in the adjacency-list format. Write a function readgraph to generate a graph from user inputs.

The user enters n and m first. The user then enters m edges (pairs of endpoints). Assume that the user does

not enter the same edge multiple times.

Write another function printgraph to print a graph in the format illustrated in the sample output.

Part 2: Modified BFS

The breadth-first traversal can be used to find shortest distances from the vertex from which the traversal

begins. You need to keep track of the levels of visited vertices in the BFS queue. Since we are interested

in d(V1,V2), we start the traversal from vertices of V1, and stop the traversal as soon as a vertex v ∈ V2 is

located (during an enqueue or dequeue operation). The level of the vertex v is returned. If the BFS terminates

without ever visiting a vertex of V2, the BFS function should return ∞.

Part 3: Computing d(V1,V2) by Method 1

For all u ∈V1 = {0,1,2, . . . ,n1−1}, call BFS(G,u) as implemented in Part 2, and compute the minimum of

the n1 returned values. This is clearly the desired value of d(V1,V2). Implement this algorithm in a function

computedist1 that runs in O(n1(n+m)) time.

Part 4: Computing d(V1,V2) by Method 2

Write an O(n+m)-time function computedist2 to compute d(V1,V2). Prepare a graph H from G, in

which V1 is contracted to a single vertex, and V2 is contracted to another single vertex. This conversion

should finish in O(n+m) time. Now, make a single invocation of BFS on H.

The main() function

• Read the graph from user inputs. Print the graph. (See Part 1.)

• Call computedist1 to display the n1 values returned by the BFS calls, and their minimum (which is

d(V1,V2)).

• Contract the graph as suggested in Part 4. Print the contracted graph H. Run BFS on H, and print the

returned value.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 1 of 2 —

Sample output

n = 12

m = 15

n1 = 3

n2 = 2

3 10 9 7 7 10 5 1 2 6 11 6 9 6 7 3 4 8 8 10

3 5 8 2 9 5 2 1 3 11

+++ The constructed graph

0 ->

1 -> 2, 5

2 -> 1, 8, 6

3 -> 11, 5, 7, 10

4 -> 8

5 -> 9, 3, 1

6 -> 9, 11, 2

7 -> 3, 10, 9

8 -> 2, 10, 4

9 -> 5, 6, 7

10 -> 8, 7, 3

11 -> 3, 6

+++ Method 1

BFS(0) returns INFINITY

BFS(1) returns 3

BFS(2) returns 2

--- d(V1,V2) = 2

+++ Method 2

--- The contracted graph

0 -> 8, 6, 5

1 ->

2 ->

3 -> 11, 7, 5

4 -> 8

5 -> 0, 9, 3

6 -> 11, 0, 9

7 -> 11, 9, 3

8 -> 11, 0, 4

9 -> 7, 6, 5

10 ->

11 -> 8, 7, 6, 3

--- d(V1,V2) = 2

— Page 2 of 2 —

