
CS29003 Algorithms Laboratory

Assignment No: 5

Last date of submission: 13–February–2018

The king of Prioquesia has built N foonerators F0,F1,F2, . . . ,FN−1 arranged in a straight line (in fixed

positions). The distance between Fi and Fi+1 is di for i = 0,1,2, . . . ,N − 2. The king also has K pairs

of jacks. Each pair of jacks is meant for connecting a pair of foonerators. One foonerator can hold only one

jack, so each foonerator can be connected to at most another foonerator. The connections are to be made by

costly titanium bars. So the king intends to choose those K pairs of foonerators such that the total connection

length is as small as possible. Assume that K < N/2, and that all distances di are positive integers.

A greedy algorithm works well for solving the king’s problem. The first insight is that we can choose only

consecutive pairs (this is feasible since K < N/2). In order to see why, suppose that some solution connects

two non-consecutive foonerators Fi and Fj with j > i+2. If there exist two consecutive foonerators Fl and

Fl+1 with i < l < l + 1 < j such that neither Fl nor Fl+1 is connected to a foonerator, then replacing the

connection between Fi and Fj by the connection between Fl and Fl+1 improves the solution. If no such l

exists, then we have a situation similar to what is illustrated in the following figure. In this case too, the cost

can be improved by choosing consecutive foonerator pairs only.

(b) Cost improvement

(a) Non−optimal solution

An obvious greedy strategy now is to choose consecutive pairs in an increasing order of separation. A heap

(more correctly, a priority queue) helps here. There is no need to sort the array D = (d0,d1,d2, . . . ,dN−2) of

distances. Each node in the heap should store the left endpoint l of a connection, the right endpoint r of the

connection, and the cost c of the connection. For a reason to be explained in Part 3, storing r is necessary,

and c is not necessarily the actual distance between the two endpoints. The heap ordering is with respect to

the costs. Since we extract minimum-cost connections first, the heap should be a min-heap.

Part 1: Heap functions

As discussed above, the heap comprises nodes of triples (l,r,c), and the heap ordering is with respect to c.

Write the min-heap functions heapify, makeheap, insert and deletemin for this heap. Write your own

functions. Do not make any built-in library calls, even if available.

Part 2: A greedy algorithm

Initialize your heap array with the N −1 triples (i, i+1,di) for i = 0,1,2, . . . ,N −2. Build a min-heap from

the array. Now, repeat the following steps until K connections are added. Let the entry stored at the root

of the heap be (l,r,c). If neither l nor r is so far connected to another foonerator, add the connection (l,r).
Irrespective of whether you add the connection or not, make a deletemin from the heap. Write a function

greedy to implement this strategy. The function should print the connections added, and the total cost.

Part 3: The greedy algorithm with error correction

The algorithm of Part 2 is not guaranteed to give an optimal solution, as demonstrated below (N = 5, K = 2).

(b) Optimal solution

(a) Greedy solution

8324

— Page 1 of 3 —

This problem can however be handled using a future error-correction strategy. The following figure explains

the idea. Suppose that A,B,C,D,E,F are consecutive foonerators with their separations as shown.

6 5 3 6 4 6 5 3 6 4

A B C D E F

A B C D E F

A B C D E F

A B C D E F

A B C D E F

A B C D E F

What they actually stand forAddition of virtual connections

Here, CD is the least-cost consecutive pair, and so is selected by the greedy algorithm if CD appears at some

time at the root of the min-heap. Suppose that at that point of time neither of the six foonerators of the figure

is connected. The algorithm adds the connection CD. We have cost(CD) = 3 (this is a real connection). But

in future it may so happen that deleting CD and adding BC and EF leads to a better cost. This situation can

be captured by the virtual connection BE. Adding both CD and BE essentially means adding BC and DE.

Thus the cost of BE is cost(BC)+ cost(DE)− cost(CD) = 5+6−3 = 8.

Now, suppose that CD and BE are already added, and we want to add AF . This means deleting BE followed

by adding AB and EF . We now have cost(AF)+ cost(BE)+ cost(CD) = cost(AB)+ cost(CD)+ cost(EF),
that is, cost(AF) = cost(AB)+ cost(EF)− cost(BE) = 6+4−8 = 2. These virtual connections rectify any

error that the greedy choices make.

Write a function greedyec to implement the corrected greedy algorithm. The function starts with an initial

heap built from the N − 1 triples (i, i+ 1,di) for i = 0,1,2, . . . ,N − 2. These triples correspond to the real

connections. Repeat until K connections (real and/or virtual) are added. Let the root of the heap store

(l,r,c). We have r = l + 1 if this corresponds to a real connection, or r > l + 1 if this corresponds to a

virtual connection. Make a deletemin in the heap. Now, check whether l and r are unconnected. If so, add

the connection. If the connection is added, look at the virtual connection (l − 1,r + 1). If l − 1 > 0 and

r+1 6 N−1, this is a valid connection. Moreover, if l−1 and r+1 too are unconnected, it is admissible to

add the virtual connection (l−1,r+1). The cost of this connection is dl−1 +dr −c. Each insert is preceded

by a deletemin, so the size of the heap never exceeds N −1.

When K connections (both the real and the virtual ones) are added, make final adjustments to identify the

real connections that the collection of added connections stands for. Print these final connections, and the

total cost.

The main() function

• Read N and K from the user.

• Read the N −1 distances d0,d1,d2, . . . ,dN−2 in an array D.

• Call greedy on N,K,D to obtain the greedy solution.

• Call greedyec on N,K,D to obtain the optimal solution achieved by the greedy algorithm with error

correction.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 3 —

Sample output

N = 100

K = 40

12 17 6 6 6 11 16 13 20 15 19 11 12 20 16 12 14 6 9 5 8 9 15 13 13

18 7 8 19 8 20 10 5 5 12 6 12 7 15 11 17 13 17 8 13 12 15 6 13 19

6 16 8 16 9 16 14 11 20 12 14 19 17 14 20 8 16 11 10 10 17 6 18 13 9

10 20 19 11 13 18 12 8 5 8 12 16 17 18 15 8 12 14 20 5 13 8 16 19

*** Part 1: Greedy algorithm

--- Adding connections

(32,33): 5 (19,20): 5 (83,84): 5 (94,95): 5 (3, 4): 6 (17,18): 6

(35,36): 6 (71,72): 6 (47,48): 6 (50,51): 6 (37,38): 7 (26,27): 7

(65,66): 8 (43,44): 8 (90,91): 8 (96,97): 8 (52,53): 8 (29,30): 8

(74,75): 9 (21,22): 9 (54,55): 9 (68,69):10 (78,79):11 (39,40):11

(11,12):11 (5, 6):11 (57,58):11 (0, 1):12 (15,16):12 (81,82):12

(85,86):12 (45,46):12 (59,60):12 (7, 8):13 (23,24):13 (41,42):13

(63,64):14 (92,93):14 (9,10):15 (87,88):17

Total cost = 381

*** Part 2: Greedy algorithm with error correction

--- Adding connections

(0, 1):12 (2, 3): 6 (4, 5): 6 (7, 8):13 (11,12):11 (15,16):12

(17,18): 6 (19,20): 5 (21,22): 9 (23,24):13 (26,27): 7 (29,30): 8

(31,32):10 (33,34): 5 (35,36): 6 (37,38): 7 (39,40):11 (41,42):13

(43,44): 8 (45,46):12 (47,48): 6 (50,51): 6 (52,53): 8 (54,55): 9

(57,58):11 (59,60):12 (63,64):14 (65,66): 8 (67,68):11 (69,70):10

(71,72): 6 (74,75): 9 (78,79):11 (81,82):12 (83,84): 5 (85,86):12

(90,91): 8 (92,93):14 (94,95): 5 (96,97): 8

Total cost = 365

— Page 3 of 3 —

