
CS21003 Algorithms I, Autumn 2013–14

Mid-Semester Test

Maximum marks: 60 Time: 24-Sep-2013 (2:00–4:00 pm) Duration:2 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. You are given a binary treeT in the standard pointer-based representation. Each node in the tree consists of
a key and two pointers (left and right). Write a function that, upon the input of a pointer to the root node,
returns a suitable value indicating whetherT is structurally an AVL tree. You do not need to look at the
keys to identify whetherT satisfies BST ordering (this is already covered in the class). Do not add any extra
space in the nodes of the tree. If there aren nodes in the tree, your function must run inO(n) time. (10)

Solution The following recursive function returns an integer. If thereturned value is−2, thenT is structurallynot an
AVL tree. Otherwise, the height ofT is returned. The outermost caller function can check whether T is an AVL
tree by verifying whether the return value is> −1.

int isAVLTree (treenode *T)

{

int lh, rh, d;

if (T == NULL) return -1;

lh = isAVLTree(T -> left);

rh = isAVLTree(T -> right);

if ((lh == -2) || (rh == -2)) return -2;

d = rh - lh;

if ((d <= -2) || (d >= 2)) return -2;

return 1 + ((lh >= rh) ? lh : rh);

}

— Page 1 of 8 —

2. You are given a rooted treeT . Thewidth of T is the maximum number of nodes at a level in the tree. For
example, consider a tree of height three on ten nodesa, b, c, d, e, f, g, h, i, j, wherea is the root having three
childrenb, c, d, nodeb has two childrene, f , noded has three childreng, h, i, andh has one childj. In this
tree, the numbers of nodes at levels0, 1, 2, 3 are respectively1, 3, 5, 1. The width of this tree is therefore5.

You are givenT in the first-child-next-sibling representation. Design an algorithm to compute the width of
T in O(n) time, wheren is the number of nodes inT . (10)

Solution In the class, we have seen how the heighth of T can be computed inO(n) time. We use an arrayC of size
h+1 in order to store the counts of the nodes at different levels of T . This array is filled by a recursive traversal
of the tree. Then, a maximum is taken over the counts.

void traverse (tree T, int C[], int level)

{

if (T == NULL) return;

C[level]++;

traverse(T -> left, C, level+1);

traverse(T -> right, C, level);

}

int width (tree T)

{

int *C, max, h, i;

h = height(T);

C = (int *)malloc((h+1) * sizeof(int));

for (i=0; i<=h; ++i) C[i] = 0;

traverse(T,C,0);

max = 0;

for (i=0; i<=h; ++i) if (C[i] > max) max = C[i];

free(C);

return max;

}

— Page 2 of 8 —

Roll no: Name:

3. You are given two arraysA andB of integers of sizesm andn. Your task is to check whetherA andB are
equal assets. The arraysA andB need not be sorted, and may contain repeated occurrences of the same
values. When we treat them as sets, all repetitions should be discarded (only one occurrence counts). For
example, ifA = (5, 1, 2, 5, 1, 8, 1, 3) andB = (2, 1, 8, 2, 5, 3), the answer isYes, since both the arrays are
equal to{1, 2, 3, 5, 8} as sets. Design an algorithm to solve this problem in expectedO(m+ n) time. (10)

Solution We first verify whetherA ⊆ B using a hash tableH. We insert elements ofB one by one inH. Equal values
are not duplicated inH. After this insertion phase, we search whether each value stored inA can be found in
H. If we choose a hash table of an appropriate size (like2n cells with open addressing), each insertion and
search finishes in expectedO(1) time. Consequently, the expected running time for checkingwhetherA ⊆ B
is O(m+ n).

We can similarly check inO(m+ n) time whetherB ⊆ A. We finally declareA andB as equal if and only if
bothA ⊆ B andB ⊆ A are true.

(A faulty strategy to decide whetherA ⊆ B is to insert the elements ofB in H, and then delete elements ofA
one by one fromH. The problem with this method is that a failed deletion attempt does not imply the absence
of this element inB. It could very well be that this element had an earlier appearance inA and was successfully
deleted fromH in an earlier iteration.)

— Page 3 of 8 —

4. LetA be an unsorted array of integersa0, a1, a2, . . . , an−1. An inversion in A is a pair of indices(i, j) with
i < j andai > aj . Modify the merge sort algorithm so as to count the total number of inversions inA in
O(n logn) time. (10)

Solution We splitA in two halvesL (the left⌈n/2⌉ elements) andR (the right⌊n/2⌋ elements). We recursively compute
the numbersnLL andnRR of inversions inL andR. The recursive algorithm will also sortL andR. While
mergingL andR to a final sorted array, we compute the numbernLR of inversions betweenL andR. We
finally return the countnLL + nRR + nLR. The following functions do this.

int merge (int *L , int n1, int *R, int n2)

{

int *B, i, j, k, nLR;

B = (int *)malloc((n1 + n2) * sizeof(int));

nLR = 0; i = j = k = 0;

while ((i < n1) && (j < n2)) {

if ((j == n2) || (L[i] <= L[j])) { B[k] = L[i]; ++k; ++i; }

else { B[k] = L[j]; nLR += n1 - i; ++k; ++j; }

}

for (k=0; k<n1+n2; ++k) L[i] = B[i];

free(B);

return nLR;

}

int ninv (int *A, int n)

{

int n1, n2, cnt;

n1 = (n + 1) / 2; n2 = n - n1;

cnt = ninv(A,n1);

cnt += ninv(A+n1,n2);

cnt += merge(A,n1,A+n1,n2);

return cnt;

}

The computation of the inversion counts adds only aΘ(n) overhead tomerge (andO(1) overhead toninv).
Therefore, the running time satisfies

T (n) = 2T (n/2) + Θ(n).

By the master theorem of divide-and-conquer recurrences, we haveT (n) = Θ(n log n). The function sortsA
as a side effect. If this is undesirable, one first copiesA element-by-element to another array and computes the
number of inversions in the copy. This has only aΘ(n) added overhead.

— Page 4 of 8 —

Roll no: Name:

5. You are given an array ofn integersa0, a1, a2, . . . , an−1. Your task is to find out the countk of mutually
distinct values that appear inA. Of course, if you sortA, you can obtain this count inO(n log n) time.
Propose an algorithm to determinek in O(n log k) time. (If k ≪ n, then this is a faster algorithm than the
algorithm based upon sorting.) (10)

Solution This is an algorithm which makes a careful use of data structures. It uses a height-balanced BST (like an AVL
tree)T which is initialized to the empty tree. The array elementsa0, a1, . . . , an−1 are inserted one by one (in
any order) inT . We assume thatT does not support repeated existence of the same item. After then insertions
(or insertion attempts), the count of nodes inT is computed and returned.

If A contains exactlyk distinct values, thenT never contains more thank nodes. SinceT is height-balanced, its
height always remainsO(log k). Therefore,n insertions take a total ofO(n log k) time. The number of nodes
in T (after all insertions) can be computed by aΘ(k) traversal inT (done in class).

— Page 5 of 8 —

6. In this exercise, you design a max-heapH (more precisely, a max priority queue) that supportsO(1)-time
findMin, andO(log n)-time deleteMin operations (wheren is the number of elements stored inH). H is
represented as an array with each cell storing a structure of two components: a value (val) that follows max-
heap ordering, and the minimum (min) of all the values stored in the subtree rooted at that node. During
makeHeap, insert and deleteMax, the minimum values can be updated suitably so that the running times of
these functions increase only by constant factors (you do not have to rewrite these functions). For this array
H, implement findMin to run inO(1) time and deleteMin to run inO(log n) time. (10)

Solution FindMin should return the min value stored at the root (H[0].min).

For deleteMin, we start from the root, read the min valuem stored there, and traverse a root-to-leaf path to a
leaf storing this minimum valuem. In each step, we choose the child for which the minimum is thesame as
m. We delete this leaf by copying the last leaf at that position. But then, there are two tasks remaining. First,
we have to move up the deletion path (that located the leaf) inorder to restore the max-heap-ordering property.
Second, we have to adjust the min values on all the nodes on thedeletion path. Moreover, the parent of the
last leaf loses a child, so the min values on the root-to-last-leaf path should also be recalculated (unless the
deleted leaf is the last leaf, in which case the root-to-last-leaf path is the same as the deletion path). No nodes
outside these two paths are affected by deleteMin, so we do not need to recalculate their val and min fields. The
following code snippet elaborates the deleteMin operation.

i = 0;

while (1) { /* Follow the root-to-leaf path to a minimum leaf */

l = 2*i + 1; r = 2*i + 2; /* Indices of two children */

if (l >= n) break; /* Already reached a leaf node */

if (r >= n) i = l; else i = (H[l].min <= H[r].min) ? l : r;

/* Go to the child storing the smaller min value */

}

/* Here i stores the index of the minimum leaf to be deleted */

if (i < n-1) H[i] = H[n-1]; /* Copy the last leaf to the deletion position */

else i = (n-1)/2; /* The last leaf is deleted, so start from its parent */

j = i; /* Remember the end of the deletion path */

if (i != (n-1)/2) { /* If the last leaf is not deleted */

while (1) { /* Loop for restoring max-heap property */

if (i == 0) break; /* Already reached root */

p = (i-1)/2; /* Index of parent */

if (H[p].val >= H[i].val) break; /* Max-heap ordering restored */

t = H[p]; H[p] = H[i]; H[i] = t; /* Swap with parent */

i = p;

}

}

i = j; /* Restore i to the index of the last node on the deletion path */

while (1) { /* Loop for recalculating the min values on the deletion path */

l = 2*i + 1; r = 2*i + 2; /* Indices of the left and right children */

if (l >= n) H[i].min = H[i].val; /* Minimum at a leaf node */

else if (r >= n) H[i].min = H[l].min; /* Only the left child exists */

else H[i].min = (H[l].min <= H[r].min) ? H[l].min : H[r].min;

/* Smaller of the min values stored in the two children */

if (i == 0) break; /* Upward journey ends at the root */

i = (i-1)/2; /* Move to the parent */

}

if (j != (n-1)/2) { /* Adjust min values on the root-to-last-leaf path */

... /* Repeat the last loop with i initialized to (n-1)/2 */

}

--n; /* Finally, decrease the heap size by one */

— Page 6 of 8 —

Roll no: Name:

For rough work and leftover answers

— Page 7 of 8 —

For rough work and leftover answers

— Page 8 of 8 —

