CS21003 Algorithms I, Autumn 2013-14

Mid-Semester Test

Maximum marks: 60 Time: 24-Sep-2013 (2:00—4:00 pm) Duratioimours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisevéyral questions,

1. You are given a binary trég in the standard pointer-based representation. Each node in the trégsohs
a key and two pointers (left and right). Write a function that, upon the inpatpointer to the root node,
returns a suitable value indicating whetlieiis structurally an AVL tree. You do not need to look at the
keys to identify whetheT" satisfies BST ordering (this is already covered in the class). Do notradeix#ra
space in the nodes of the tree. If there mamodes in the tree, your function must run(irin) time. (120)

Solution The following recursive function returns an integer. If tie¢urned value is-2, thenT is structurallynot an
AVL tree. Otherwise, the height @f is returned. The outermost caller function can check whieéthie an AVL
tree by verifying whether the return valuess—1.

int i sAVLTree (treenode *T)

{
int Ih, rh, d;
if (T == NULL) return -1;
Ih = isAVLTree(T -> left);
rh = isAVLTree(T -> right);
if ((Ih===-2) || (rh =-2)) return -2;
d=rh- Ih;
if ((d<=-2) || (d>=2)) return -2;
return 1 + ((lh >=rh) 2 lh: rh);
}

— Page 1 of8 —

2. You are given a rooted tréE. Thewidth of 7" is the maximum number of nodes at a level in the tree. For
example, consider a tree of height three on ten nades:, d, e, f, g, h, i, j, wherea is the root having three
childrenb, ¢, d, nodeb has two childrere, f, noded has three childrep, h, i, andh has one child. In this
tree, the numbers of nodes at levels, 2, 3 are respectively, 3, 5, 1. The width of this tree is therefofe

You are giveril in the first-child-next-sibling representation. Design an algorithm to compateitith of
T in O(n) time, wheren is the number of nodes . (10)

Solution In the class, we have seen how the heigtdf 7' can be computed i (n) time. We use an arra’ of size
h+1in order to store the counts of the nodes at different leviels.d his array is filled by a recursive traversal
of the tree. Then, a maximum is taken over the counts.

void traverse (tree T, int C[], int level)
{
if (T == NULL) return;
dlevel] ++;
traverse(T -> left, C level +1);
traverse(T -> right, C level);

int wwdth (tree T)
int *C, max, h, i;

h hei ght (T);

C=(int *)malloc((h+l) * sizeof(int));

for (i=0; i<=h; ++i) Ci] = 0;

traverse(T,C, 0);

max = 0;

for (i=0; i<=h; ++i) if (Ci] > max) max = Ci];
free(C;

return nax,

— Page 2 of 8 —

Roll no: Name:

3. You are given two arrayd and B of integers of sizes: andn. Your task is to check whethet and B are
equal assets. The arraysA and B need not be sorted, and may contain repeated occurrences of the same
values. When we treat them as sets, all repetitions should be discardgaiie occurrence counts). For
example, ifA = (5,1,2,5,1,8,1,3) andB = (2,1, 8,2,5, 3), the answer i¥es, since both the arrays are
equal to{1, 2,3, 5,8} as sets. Design an algorithm to solve this problem in expeagted + n) time. (10)

Solution We first verify whetherd C B using a hash tabl&/. We insert elements dB one by one inH. Equal values
are not duplicated i/. After this insertion phase, we search whether each vatresin A can be found in
H. If we choose a hash table of an appropriate size @ikeells with open addressing), each insertion and
search finishes in expecter(1) time. Consequently, the expected running time for checkihgtherA C B
isO(m + n).
We can similarly check i (m + n) time whetherB C A. We finally declared and B as equal if and only if
bothA C B andB C A are true.

(A faulty strategy to decide whether C B is to insert the elements @ in H, and then delete elements 4f
one by one fromH . The problem with this method is that a failed deletion afiedoes not imply the absence
of this element inB. It could very well be that this element had an earlier appeea inA and was successfully
deleted fromH in an earlier iteration.)

— Page 30f8 —

4. Let A be an unsorted array of integexg a1, as, .. .,a,—1. Aninversionin A is a pair of indicegi, 7) with
i < j anda; > a;. Modify the merge sort algorithm so as to count the total number of invessioA in
O(nlogn) time. (10)

Solution We splitA in two halvesL (the left[n /2] elements) and (the right| n/2]| elements). We recursively compute
the numbers.;,;, andngrpr of inversions inL and R. The recursive algorithm will also soft and R. While
merging L and R to a final sorted array, we compute the numheg, of inversions betweer, and R. We
finally return the count.r.;, + nrr + nrr. The following functions do this.

int merge (int L, int nl, int *R int n2)
{
int *B, i, j, k, nLR
B = (int *)malloc((nl + n2) * sizeof(int));
nLR=0; i =j =k = 0;
while ((i < nl) & (j < n2)) {
if ((b ==n2) || (L[] <= L[j1)) { BIK] = L[i]; ++k; ++i; }
else { B[k] = L[j]; nNnLR += nl - i; ++k; ++j; }
}
for (k=0; k<nl+n2; ++k) L[i] = B[i];
free(B);
return nLR;
}
int ninv (int *A int n)
{
int nl, n2, cnt;
nl =(n+1) / 2, n2=n - nl;
cnt = ninv(A nl);
cnt += ni nv(A+nl, n2);
cnt += nerge(A nl, A+nl, n2);
return cnt;
}

The computation of the inversion counts adds onfy(a) overhead taver ge (andO(1) overhead tai nv).
Therefore, the running time satisfies

T(n) =2T(n/2) + O(n).
By the master theorem of divide-and-conquer recurrencedjavel’ (n) = ©(nlogn). The function sortsd

as a side effect. If this is undesirable, one first copiedement-by-element to another array and computes the
number of inversions in the copy. This has onl@ &) added overhead.

— Page 4 of 8 —

Roll no: Name:

5. You are given an array of integersag, a1, ao, - .., a,_1. Your task is to find out the courit of mutually
distinct values that appear iA. Of course, if you sort4, you can obtain this count i®(nlogn) time.
Propose an algorithm to determihén O(n log k) time. (If & < n, then this is a faster algorithm than the
algorithm based upon sorting.) (10)

Solution This is an algorithm which makes a careful use of data strastut uses a height-balanced BST (like an AVL
tree)T which is initialized to the empty tree. The array elementsa, ..., a,_1 are inserted one by one (in
any order) inI". We assume that does not support repeated existence of the same item. Aéerihsertions
(or insertion attempts), the count of nodedis computed and returned.

If A contains exactly: distinct values, thefd’ never contains more thgnnodes. Sincé’ is height-balanced, its
height always remaing(log k). Thereforey insertions take a total ab(n log k) time. The number of nodes
in T (after all insertions) can be computed b®ék) traversal inT” (done in class).

— Page50f8 —

6. In this exercise, you design a max-hedp(more precisely, a max priority queue) that supp@ts)-time
findMin, andO(log n)-time deleteMin operations (whereis the number of elements storedif). H is

represented as an array with each cell storing a structure of two comgoneralue (val) that follows max-
heap ordering, and the minimum (min) of all the values stored in the subtrésdrabthat node. During
makeHeap, insert and deleteMax, the minimum values can be updated suitdidy the running times of
these functions increase only by constant factors (you do not haeetide these functions). For this array

H, implement findMin to run irD(1) time and deleteMin to run im(log n) time.

Solution FindMin should return the min value stored at the radit@] . ni n).

(10)

For deleteMin, we start from the root, read the min vatustored there, and traverse a root-to-leaf path to a

leaf storing this minimum value:. In each step, we choose the child for which the minimum isstimae as

m. We delete this leaf by copying the last leaf at that positBat then, there are two tasks remaining. First,
we have to move up the deletion path (that located the leafjder to restore the max-heap-ordering property.
Second, we have to adjust the min values on all the nodes odeleéon path. Moreover, the parent of the
last leaf loses a child, so the min values on the root-to&sdt path should also be recalculated (unless the
deleted leaf is the last leaf, in which case the root-toHkeat path is the same as the deletion path). No nodes
outside these two paths are affected by deleteMin, so we thoeral to recalculate their val and min fields. The

following code snippet elaborates the deleteMin operation

i = 0;
while (1) { /* Follow the root-to-leaf path to a m ninmum| eaf
I = 2+i + 1; r = 2%xi + 2; /+ Indices of two children
if (I >=n) break; /= Already reached a | eaf node
if (r >n)i =1; elsei = (HI].min<=Hr]l.mn) 21 : r;
/* Go to the child storing the snaller mn val ue
}
/* Here i stores the index of the mininumleaf to be deleted */
if (i <n-1) Hi] = Hn-1]; [+ Copy the last leaf to the deletion position
elsei = (n-1)/2; /* The last leaf is deleted, so start fromits parent
j =i /* Remenber the end of the deletion path
if (i I'=(n-1)/2) { /= 1f the last leaf is not deleted
while (1) { [+ Loop for restoring max-heap property
if (i == 0) break; /= Al ready reached root
p=(i-1)/2; /* I ndex of parent
if (Hp].val >= Hi].val) break; /= Max-heap ordering restored
t =Hpl; Hpl] = Hil; Hi] =t; /+* Swap with parent
i =p;
}
}
i =7 [/~ Restore i to the index of the |ast node on the deletion path
while (1) { /= Loop for recalculating the mn values on the deletion path
| =2+xi + 1; r = 2*i + 2; /* Indices of the left and right children
if (I >>=n) Hi]l.mn=Hi].val; /* Mninmumat a |eaf node
else if (r >=n) Hi].mn = HI].mn; /* Only the left child exists
else Hi]l].min = (HI].mn<=Hr]l.mn) ?2 HI].mn: Hr].mn;
/+ Smaller of the nmin values stored in the two children
if (i == 0) break; /+ Upward journey ends at the root
i = (i-1)/2; /= Move to the parent
}
if (j '=(n-1)/2) { /* Adjust min values on the root-to-last-|eaf path
/= Repeat the last loop with i initialized to (n-1)/2
}
--n; /* Finally, decrease the heap size by one

— Page 6 of 8 —

*]
*]
*]

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/
*/

*/
*/

*/

Roll no: Name:

For rough work and leftover answers

— Page 7 of 8 —

For rough work and leftover answers

— Page 80of8 —

