
CS29003 Algorithms Laboratory, Autumn 2013–14

Lab Test

Maximum marks: 25 Date: 23-Oct-2013 Duration: 2 hours

In a ternary search tree, each node stores two key values (k1 andk2) and three pointers (L, M andR). Let x be any key
stored in the left subtree of a node,y any key stored in the middle subtree, andz any key stored in the right subtree.
We must have:

x < k1 < y < k2 < z .

The tree does not store duplicate keys. Leaf nodes are allowed to store single keys ask1. The other keysk2 are left
undefined. For example, when the tree consists of an odd number of keys, at least one node must contain only one key,
and any such node must be a leaf. The following figure shows a ternary search tree with undefined keys shown as_ .

30 60

15 25 40 50 75 85

80575518 _ _1210

Insertion in a ternary search tree proceeds as follows. Letx be the key to be inserted. Starting from the root, we
attempt to locatex in the tree by making a three-way branching at each visited node. If x is found in the tree, no
changes are made, and the original tree is returned.

Now, suppose thatx does not exist in the tree. There are two ways the search can fail. First, the search reaches
a leaf node storing only one key (different fromx). Since that leaf can accommodate the new keyx, we populate its
two keysk1 andk2. Depending upon the value ofx in comparison with the earlier key, this adjustment is made.Think
about the insertion of 17 or 19 in the tree of the above figure.

The second way the search fails is when a NULL pointer is followed from a node storing bothk1 andk2. For
example, think about the insertion of 35, 45 or 58 in the abovetree. In this case, a new leaf is created, its first keyk1

storesx, its second keyk2 is left undefined, and the leaf is connected to the last node inthe search path by replacing
the NULL pointer mentioned above by a pointer to the new leaf node.

A recursive function similar to the in-order listing of a binary search tree prints the keys stored in a ternary search
tree in the sorted order.

Write a C/C++ program containing the following functions.

• A function implementing the ternary-search-tree insertion procedure described above.

• A function for the sorted printing of the keys stored in a ternary search tree. Do not print the undefined keys.
Since you are going to insert only positive integers, you cantake 0 or−1 as the undefined key.

• A main function that first reads the total numbern of insertions in the tree. An empty ternary search tree is
created. Subsequently,n randomly generated positive integers are inserted in the tree. After each insertion, the
keys in the tree are printed in the sorted order. An insertionattempt fails to change the tree if an existing key
value is attempted to be inserted. You do not need to worry about that. Just maken insertion attempts.

Sample output

n = 50
+++ Insert 986 done
986
+++ Insert 130 done
130 986
+++ Insert 945 done
130 945 986
+++ Insert 90 done

90 130 945 986
+++ Insert 665 done

90 130 665 945 986
...

— Page 1 of 2 —



A challenging sequel

If you are done with the above program well before the end of the test, make a copy of your program to another file,
and change the copy. This part is not meant for submission. You will not get any extra credit for solving this part,
completely or partially. In the submission server, submit the file solving only the parts given on Page 1. If you can
make this part work, e-mail me (abhij@cse.iitkgp.ernet.in andSadTijihba@gmail.com) a complete and error-free code
by 4:30pm today, and earn a chocolate bar. So, here you go.

Implement deletion in a ternary search tree, that is, write afunction that, upon the input of a ternary search tree
T and a key valuex, returns a ternary search tree withx deleted fromT (if it existed in T at all). Don’t forget that
only leaf nodes are allowed to have undefined second keysk2. All internal nodes must contain two valid keys. And, of
course, your function must run inO(h(T )) time, whereh(T ) is the height ofT . The algorithm is yours.

To demonstrate the working of your deletion routine, start with the tree created byn insertion attempts (see Page 1),
and keep on deleting one of the keys stored at the root. You mayalternately or randomly select the deletion key from
the two possibilities at the root node. After every deletion, print the tree. Repeat until the tree becomes empty.

If you have no segmentation faults until the end, claim your chocolate from me.

— Page 2 of 2 —


