
CS21003 Algorithms I, Autumn 2013–14

End-Semester Test

Maximum marks: 80 Time: 19-Nov-2013 (2:00–5:00 pm) Duration: 3 hours

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. Draw the skip list storing the following ten key values at the indicated levels. (10)

Key value 10 20 30 40 50 5 25 45 35 15
Level 0 0 0 0 0 1 1 1 2 3

Solution The skip list is shown in the following figure.

I

N

F50454020 25 30 355 10 15

— Page 1 of 10 —

2. Prove or disprove the following two assertions.

(a) The second minimum in any max-heap withn > 10 pairwise distinct keys must be found in a leaf node.(5)

Solution False. Here is a counterexample.

1

2 3

4

9 7

8

5

6

10

(b) The minimum in any AVL tree withn > 10 keys must be found in one of the last two levels. (5)

Solution False. Here is a counterexample.

1

10

9

8

7

6

5

4

3

2

— Page 2 of 10 —

Roll no: Name:

3. Demonstrate how Prim’s algorithm computes the minimum spanning tree of the following graph. Leta be
the root of the MST. Show the initialization and iterations in Prim’s algorithm appliedon this graph. (10)

a

b c

d e
1

5

3

4

8
7

2

6

Solution The initialization and the four iterations are described inthe following figure.

Initialization

8

7

6

3

25

1

QP

c

d

e

4

b

a

c

d

e

6

3

4

2

1

7a

b

QP

5

After Iteration 1

c

d

2

3a

b

e

QP

5

After Iteration 2

1

d

6

3 a

b

e

5 1

c

2

QP

a

b

e

5 1

c

2

QP

After Iteration 3 After Iteration 4

d

3

— Page 3 of 10 —

4. Let T be a string of lengthm. Propose anO(m)-time algorithm to determine whetherT can be represented
asT = αβ = βα for two non-emptystringsα andβ . (10)

Solution Search forT in T T using the KMP string-matching algorithm. The first and the last positions are trivial
matching positions. If there is any non-trivial matching position, we have a representation ofT as in the
question. The following figure demonstrates this.

T

T T

α

α α

β

ββ

— Page 4 of 10 —

Roll no: Name:

5. Let S andT be strings of lengthsn andm respectively, withm 6 n. T is called acover of S if every position
in S belongs to some match ofT in S. For example,T = aba is a cover ofS = ababaaba. Indeed, the three
matches ofT in S cover all the positions inS as demonstrated here:ababaaba. On the other hand,T = ab is
not a cover ofS = ababaaba as demonstrated here:ababaaba (the uncovered positions are shown in bold
face). Propose anO(n+m)-time algorithm to determine whetherT is a cover ofS. (10)

Solution We first run the KMP string-matching algorithm for finding allmatches ofT in S. We assume that there aret
matches, and the KMP algorithm prepares an arrayM of sizet storing the match positions in sorted order. We
then check whether there is a gap between any two consecutivematches.

Run the KMP algorithm:t = KMP(S,T,n,m,M).
Initialize nextMatchReqd = 0.
for i = 0,1,2, . . . , t −1 (in that order){

if (M[i]> nextMatchReqd), then returnFalse.
Update nextMatchReqd= M[i]+m.

}
If (nextMatchReqd> n), returnTrue.
ReturnFalse.

The KMP algorithm takesO(n+m) running time. The remaining part runs inO(t) time. Sincet 6 n−m+1,
the overall running time isO(n+m).

— Page 5 of 10 —

6. Let G = (V,E) be a directed graph. A vertexs in G is called asource if its in-degree is zero. Likewise, a
vertext in G is called atarget (or sink) if its out-degree is zero.

(a) Propose anO(|V |+ |E|)-time algorithm to locate all the sources and all the targets inG. (5)

Solution We assume the adjacency-list representation of the graph. We use two arraysS andT indexed byV to mark
whether a vertex can be a source or a target (respectively). Initially, we mark each vertex as a potential source
and a potential target. For each (directed) edge(u,v) ∈ E, we unmarku in the target arrayT , and unmarkv in
the source arrayS. After all the edges are considered, those vertices that arestill marked inS are the sources,
and those vertices that are still marked inT are the targets.

(b) Prove that a directed acyclic graph must contain at least one source andat least one target. (5)

Solution Assume that a DAG does not contain a source. This means that for every vertexv, there is (at least) an edge
(u,v) ∈ E. Let n = |V |. We start with any arbitrary vertexv0, and obtain a sequence of verticesv1,v2,v3, . . . ,vn

such that(vi,vi−1) ∈ E for all i = 1,2,3, . . . ,n. SinceG contains onlyn vertices, there must be a repetition in
v0,v1,v2, . . . ,vn. Let vi = v j with 0 6 i < j 6 n. By construction,v j,v j−1,v j−2, . . . ,vi+1,vi is a cycle inG, a
contradiction.

Analogously, the existence of a target inG can be proved.

— Page 6 of 10 —

Roll no: Name:

(c) Let G = (V,E) be a directed acyclic graph. Propose anO(|V |+ |E|)-time algorithm to count the total
number of paths from all the sources inG to all the targets inG. (10)

Solution Let s1,s2, . . . ,sk be all the sources andt1, t2, . . . , tl be all the targets inG (these can be identified inO(|V |+ |E|)
time by Part (a)). We convertG to a new DAGG′ whose vertex set contains two additional verticess andt.
We add the edges(s,si) for all i = 1,2, . . . ,k and also the edges(t j, t) for all j = 1,2, . . . , l. G′ is a DAG with
a unique sources and a unique targett. Moreover, the count of all(si, t j) paths (for alli, j) in G is the same as
the count of all(s, t) paths inG′. The size ofG′ continues to remainO(|V |+ |E|).

We make a topological sorting of the vertices inG′. This can be done inO(|V |+ |E|) time. Let the listing be
s = v0,v1,v2, . . . ,vn, t = vn+1. We use an arrayC indexed by the vertices inG′ to store the count of paths from
s to the vertices.

Initialize C[v0] = 1 andC[vi] = 0 for all i = 1,2,3, . . . ,n+1.
For i = 0,1,2, . . . ,n {

For all edges(vi,v j) in G′, setC[v j] =C[v j]+C[vi].
}
ReturnC[vn+1].

Since there are no back edges (that is, edges(vi,v j) with i > j), the for loop does not miss a path froms to t.
With the adjacency list representation ofG′, this phase can again be finished inO(|V |+ |E|) time.

The introduction of the new verticess, t could have been avoided. In that case, we start by settingC[si] = 1 for
all the sourcessi in G. At the end, we returnC[t1]+C[t2]+ · · ·+C[tl]. However, a topological sorting ofG is
necessary for the correctness of this algorithm.

— Page 7 of 10 —

7. You are givenn real intervals(ai,bi) standing for the running times ofn processes. That is,(ai,bi) stands
for a process that starts at timeai and finishes at timebi. Assume thatai < bi for all i. Your objective is
to scheduleall the processes, using as few processors as possible. You are not allowed to schedule two or
more conflicting processes (that is, processes having overlapping running times) on the same processor. A
process running in a processor is allowed to continue until it finishes. Propose an efficient greedy algorithm
to solve this problem. Supply an optimality proof for your greedy algorithm, anddeduce its running time. (10)

Solution We first sort the intervals with respect to their left endpoints. We then try to schedule the intervals one by
one in this sorted order. A processor with earliest finish time is chosen for each scheduling. If no existing
processor can accommodate a new job, a new processor is introduced. We use a min-priority queueQ to store
the right endpoints of the intervals currently scheduled—only one entry per processor. Processors are numbered
1,2,3, Each entry(p, f) in Q stores a processor numberp and the finish timef of the last process assigned
to p. The heap-ordering is with respect to the second componentf .

Sort the given intervals with respect to their left endpoints.
Let the sorted list be(a0,b0),(a1,b1),(a2,b2), . . . ,(an−1,bn−1).
Initialize nproc= 0, the min-priority queueQ to empty, andf = a0−1.
For i = 0,1,2, . . . ,n−1 {

If (i > 0), set(p, f) = min(Q). /* Q is empty only fori = 0 */
If (f > ai) {

Use a new processor: nproc++.
Setp = nproc.

} else{
Make a deleteMin inQ.

}
Schedule thei-th process(ai,bi) to processor numberp.
Insert(p,bi) in Q.

}

For the correctness, letx be a real number. The number of intervals(ai,bi) to which x belongs is denoted
by N(x). Let N = max

x∈R

N(x). We cannot schedule all the processes with less thanN processors. The above

algorithm clearly uses exactlyN processors and is therefore optimal.

The initial sorting of the intervals can be done inO(n logn) time. Subsequently, there aren deleteMin and insert
operations inQ. The maximum size ofQ is N, sinceQ stores only one entry for each processor. So the total
time for preparing the schedule (after the sorting phase) isO(n logN). Finally, N 6 n, so the overall running
time of this greedy algorithm isO(n logn).

— Page 8 of 10 —

Roll no: Name:

For rough work and leftover answers

— Page 9 of 10 —

For rough work and leftover answers

— Page 10 of 10 —

