CS21003 Algorithms I, Autumn 2013-14

End-Semester Test

Maximum marks: 80 Time: 19-Nov-2013 (2:00-5:00 pm) Duration: 3 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisew@lquestions].

1. Draw the skip list storing the following ten key values at the indicated levels. (10)

Keyvalue| 10| 20| 30|40 |50|5|25|45| 35| 15
Level |(O|O|O|jO|O|1|21|1]2]|3

Solution The skip list is shown in the following figure.

[AKAKE
A
o[o]

Ld

- 10[ep] 15|e]>{20]e]s| 25/ 3de]s| 34ef{ 40|e]s{45]efs! 50]] F

— Page 10of 10 —

2. Prove or disprove the following two assertions.

(@) The second minimum in any max-heap witk: 10 pairwise distinct keys must be found in a leaf no¢®).

Solution False. Here is a counterexample.

(b) The minimum in any AVL tree witin > 10 keys must be found in one of the last two levels. (5)

Solution False. Here is a counterexample.

— Page 2 of 10 —

Roll no: Name:

3. Demonstrate how Prim’s algorithm computes the minimum spanning tree of the fajl@gréph. Leta be
the root of the MST. Show the initialization and iterations in Prim’s algorithm apliethis graph. (120)

Solution The initialization and the four iterations are describethiafollowing figure.

Initialization

After lteration 1 After lteration 2

After Iteration 3 After lteration 4

— Page 30f 10 —

4. LetT be a string of lengtim. Propose ai®(m)-time algorithm to determine wheth@rcan be represented
asT = af3 = Ba for two non-emptystringsa andp. (10)

Solution Search forT in TT using the KMP string-matching algorithm. The first and thst lpositions are trivial
matching positions. If there is any non-trivial matchingspion, we have a representation Bfas in the
question. The following figure demonstrates this.

< T > T
L B | o | B] a

v

|« | B |
< T >

— Page 4 of 10 —

Roll no: Name:

5. Let SandT be strings of lengthe andm respectively, wittm < n. T is called acover of Sif every position
in Sbelongs to some match @fin S. For exampleT = abais a cover ofS= ababaaba. Indeed, the three
matches ofl in Scover all the positions i as demonstrated herababaaba. On the other hand; = abis
not a cover ofS = ababaaba as demonstrated herababaaba (the uncovered positions are shown in bold
face). Propose a@(n+ m)-time algorithm to determine wheth@&ris a cover ofS. (10)

Solution We first run the KMP string-matching algorithm for finding ailatches ofl in S We assume that there dre
matches, and the KMP algorithm prepares an akayf sizet storing the match positions in sorted order. We
then check whether there is a gap between any two conseaugiiches.

Run the KMP algorithmt = KMP(S T,n,m,M).
Initialize nextMatchReqd = 0.
fori=0,1,2,...,t —1 (in that order)
if (M[i] > nextMatchReqd), then retufralse.
Update nextMatchRegg M|[i] +m.
¥
If (nextMatchReqd> n), returnTrue.
ReturnFalse.

The KMP algorithm take®(n+ m) running time. The remaining part runs@t) time. Sincet < n—m+1,
the overall running time i©(n+m).

— Page50f 10 —

6. Let G = (V,E) be a directed graph. A vertexin G is called asource if its in-degree is zero. Likewise, a
vertext in G is called atarget (or sink) if its out-degree is zero.

(a) Propose ai©(|V|+ |E|)-time algorithm to locate all the sources and all the targe@.in (5)

Solution We assume the adjacency-list representation of the graghus#/ two array$ and T indexed by to mark
whether a vertex can be a source or a target (respectivelyipllly, we mark each vertex as a potential source
and a potential target. For each (directed) efdge) € E, we unmarku in the target arrayl, and unmarks in
the source arrag. After all the edges are considered, those vertices thattdlrenarked inSare the sources,
and those vertices that are still markedrimre the targets.

(b) Prove that a directed acyclic graph must contain at least one soured gt one target. (5)

Solution Assume that a DAG does not contain a source. This means thatdoy vertexv, there is (at least) an edge
(u,v) € E. Letn = |V|. We start with any arbitrary vertex, and obtain a sequence of verticgsvo, Vs, ..., Vn
such that(v;,vi_1) e Eforalli =1,2,3,...,n. SinceG contains onlyn vertices, there must be a repetition in
Vo, V1,V2,...,Vn. Letyy = vj with 0 <i < j < n. By constructionyj,vj_1,Vj_2,...,Vi+1,Vi is a cycle inG, a
contradiction.

Analogously, the existence of a targetGcan be proved.

— Page 6 of 10 —

Roll no: Name:

(c) LetG=(V,E) be adirected acyclic graph. Propose@(V| + |[E|)-time algorithm to count the total
number of paths from all the sources@to all the targets ire. (20)

Solution Lets;,s,,...,s be all the sources anglty, ...t be all the targets i® (these can be identified @(|V| + |E|)
time by Part (a)). We convef® to a new DAGG' whose vertex set contains two additional vertisendt.
We add the edges,s) for alli = 1,2,...,k and also the edgds;,t) forall j =1,2,...,I. G’ is a DAG with
a unique source and a unique target Moreover, the count of alls,,tj) paths (for alli, j) in G is the same as
the count of all(s,t) paths inG'. The size ofG’' continues to remai®(|V| + |E|).

We make a topological sorting of the verticesGh This can be done i®(|V|+ |E|) time. Let the listing be
S=\Vp,V1,V2,...,Vn,t = Vhy1. We use an arra§ indexed by the vertices i@’ to store the count of paths from
sto the vertices.

Initialize C[vg] = 1 andC[vj] =0foralli=1,2,3,...,n+1.
Fori=0,1,2,...,n{

For all edgegv;,v;) in G, setC|v;] = C|vj] +C[vi].
}

ReturnC[vp41].

Since there are no back edges (that is, edges;) with i > j), the for loop does not miss a path fresmo t.
With the adjacency list representation@f, this phase can again be finisheddV| + |E|) time.

The introduction of the new verticest could have been avoided. In that case, we start by se@figp= 1 for
all the sources; in G. At the end, we retur€[t;] +C[ty] + - -- +Cl[t;]. However, a topological sorting @ is
necessary for the correctness of this algorithm.

— Page 7 of 10 —

7. You are givem real intervals(a;, b;) standing for the running times ofprocesses. That i$a;,b;) stands
for a process that starts at timagand finishes at timé;. Assume that; < b; for all i. Your objective is
to schedulell the processes, using as few processors as possible. You are na&daltoschedule two or
more conflicting processes (that is, processes having overlappinmgutimes) on the same processor. A
process running in a processor is allowed to continue until it finishegoBeoan efficient greedy algorithm
to solve this problem. Supply an optimality proof for your greedy algorithm,daalice its running time. (10)

Solution We first sort the intervals with respect to their left endp®inWe then try to schedule the intervals one by
one in this sorted order. A processor with earliest finishetisichosen for each scheduling. If no existing
processor can accommodate a new job, a new processor idun&d. We use a min-priority que@eto store
the right endpoints of the intervals currently scheduledd~one entry per processor. Processors are numbered
1,2,3,.... Each entry(p, f) in Q stores a processor numbeand the finish time of the last process assigned
to p. The heap-ordering is with respect to the second compadhnent

Sort the given intervals with respect to their left endpmint
Let the sorted list béag, bo), (a1,b1), (az,b2),..., (8n-1,bn-1).
Initialize nproc= 0, the min-priority queu® to empty, andf = ag— 1.
Fori=0,1,2,...,n—1{
If (i >0), set(p, f) =min(Q). /* Qis empty only fori =0 */
If(f>a){
Use a new processor: nproc++.
Setp = nproc.
} else{
Make a deleteMin irQ.

Schedule thé-th processa;, b;) to processor numbep.
Insert(p,b;) in Q.
}

For the correctness, letbe a real number. The number of intervéds, bi) to which x belongs is denoted
by N(x). LetN = m%xN(x). We cannot schedule all the processes with less dhgnocessors. The above
Xe

algorithm clearly uses exactly processors and is therefore optimal.
The initial sorting of the intervals can be doned(nlogn) time. Subsequently, there areleleteMin and insert
operations iMQ. The maximum size of is N, sinceQ stores only one entry for each processor. So the total

time for preparing the schedule (after the sorting phase)idogN). Finally, N < n, so the overall running
time of this greedy algorithm i®(nlogn).

— Page 8 of 10 —

Roll no: Name:

For rough work and leftover answers

— Page 9 of 10 —

For rough work and leftover answers

— Page 10 of 10 —

