
CS21003 Algorithms I, Autumn 2013–14

Class test 2

Maximum marks: 20 Time: 14-Nov-2013 Duration: 1 hour

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. You are given an arrayA of n positive integers, each having bit-length6 l . Propose anO(nl/ logn)-time
algorithm to sortA. (10)

Solution Let t = ⌈log2n⌉. We perform radix sort with respect to the radixR= 2t . We haven= 2log2 n 6 R= 2⌈log2 n⌉ <
2log2 n+1 = 2n, that is,R= Θ(n). Counting sort with respect to each digit takesO(n+R), that is,O(n) time. The
total number ofR-ary digits to be considered is⌈l/t⌉ = Θ(l/ logn). Therefore, the running time of this radix
sort onA is O(nl/ logn). Extracting theR-ary digits of all the elements ofA can also be done in the same time.

— Page 1 of 4 —

2. Let T be a string of lengthm. Theprefix tableof T is an arrayP[0. . .m−1] such thatP[k] stores the length
of the longest common prefix ofT[k. . .m−1] andT (for eachk in the range 06 k 6 m−1). Propose an
algorithm to compute the prefix tableP of T, given only the failure function tableF [0. . .m−1] for T. Notice
thatT itself is notprovided as an input to your algorithm—onlyF andm are supplied. What is the running
time of your algorithm? (10)

Solution We clearly haveP[0] = m. So suppose that we want to computeP[k] for 16 k 6 m−1. Let α be the longest
common prefix ofT andT[k. . .m−1]. The following figure demonstrates thatα must be a proper border of
T[0. . . i]. The problem is thatα need not be the longest proper border ofT[0. . . i]. Nevertheless, any proper
border (likeα) can be obtained from the longest proper border by iteratingthe failure functionF . In the code
that follows, j stands for the length ofα.

0 k

α α

0

α

i

int *calcpfxtbl (int *F, int m)
{

int *P;
int i, j;

/* Allocate memory and initialize the prefix table */
P = (int *)malloc(m * sizeof(int));
P[0] = m; for (i=1; i<m; ++i) P[i] = 0;

/* Look at the failure function table. In order that we discover longer borders
earlier, we look at F[i] values in the decreasing sequence of i. */

for (i = m-1; i > 0; --i) {
/* Look at all non-empty proper borders of T[0...i]. Let k = i-j+1. If P[k]

is non-zero, it is assigned this value in an earlier iteration. Since
earlier iterations handle larger i, P[k] (if set) is not overwritten. */

j = F[i];
while (j > 0) {

if (P[i-j+1] == 0) P[i-j+1] = j;
j = F[j-1];

}
}
return P;

}

The running time of this algorithm is dominated by the inner while loop. For any giveni, the number of
iterations in this loop is the numberbi of non-empty proper borders ofT[0. . . i]. The running time of the

algorithm isO

(

m−1

∑
i=1

bi

)

. In the worst case (think about strings likeam or atba2t), this can beO(m2). For

random strings, eachbi is expected to be small, provided that the string alphabetΣ has at least two symbols.
More precisely, ifs= |Σ|, thenT[0. . . i] has a proper border of lengthj with probability 1/sj (for j 6 i/2).
In the random case, we expect close toO(m)-time performance of this algorithm. A worst-caseO(m)-time
algorithm may exist, but I do not know. The following string demonstrates that we cannot prematurely break
the inner while loop whenever someP[i − j +1] is found to be non-zero. We cannot break even when we see
an arbitrarily long sequence of non-zeroP[i − j +1] values in consecutive iterations of the loop.

abacabadeabacabad f abacabadeabacabadgabacabadeabacabad f abacabadeabacabad

There exist worst-caseO(m)-time algorithms to computeP from T, but our current problem is different.

— Page 2 of 4 —

For rough work and leftover answers

— Page 3 of 4 —

For rough work and leftover answers

— Page 4 of 4 —

